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Spatial Implications of Telecommuting in the United 
States 

EXECUTIVE SUMMARY 

In this project, we build a quantitative spatial model in which some workers can substitute on-
site effort with work done from home. Ability and propensity to telecommute vary by 
education and industry. In the model, telecommuting is a choice of a worker that depends on 
four considerations: (1) commuting time to work, (2) productivity of remote vs on-site work, (3) 
relative utility of remote work, and (4) the cost of housing relative to the cost of office space. 
The model nests conventional spatial equilibrium models of commuting; however, the 
introduction of telecommuting allows studying the consequences of the rise of remote work 
during the Covid-19 pandemic and beyond. 

We document several stylized facts about telecommuting before the pandemic, and ensure 
that our model is consistent with them. We quantify our framework to match the distribution 
of jobs and residents across 4,502 U.S. locations. This quantity of locations allows us to capture 
variation both within and across local labor markets. A permanent increase in the attractiveness 
of telework results in a rich non-monotonic pattern of reallocations within and across cities. 
Workers who can telecommute experience welfare gains, and those who cannot suffer losses. 
Broader access to jobs reduces inequality across residential locations. Our framework robustly 
predicts changes in residents and housing prices observed 2019--2021. 

Our main contribution is to provide a quantitative framework that allows studying effects of 
spatial policies that account for the ability of workers to work both on-site and from home.
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1. Introduction 

Telecommuting, once a fond dream of techno-utopians, came roaring to the forefront of the 
American workplace in the spring of 2020. While no more than 8% of work was done remotely 
in 2019, shutdowns and social-distancing policies introduced at the onset of the Covid-19 
pandemic pushed more than 1 out of every 3 American workers to telecommute. The sudden, 
enforced prominence of telework, and the surge of experimentation with ways to make it 
possible, has led many to wonder what role it might play in our future. Surveys indicate that 
employers plan to allow employees more leeway to work from home after the pandemic than 
before, with many previously office-bound positions going fully remote. 

This matters because the daily commute has been one of the primary sinews stitching 
commercial and residential areas together within the urban landscape. If this tie is loosened, it 
seems possible that workers with remote or “hybrid” jobs nominally located in one city center 
may choose to live beyond the bounds of its conventionally-defined commuting zone—and 
perhaps on the other side of the country entirely. From a theoretical perspective, either of 
these outcomes would be impossible in existing conventional models of the urban area, which 
either focus on a single narrow “commuting zone” and do not allow workers to live outside it, 
or model the national system of cities under the condition that everyone must live in the same 
locations as their work. 

Therefore, in this paper we aim to update the spatial modeling toolbox to allow re-mote 
employment, and develop a quantitative framework capable of analyzing the full range of 
reallocations, both within and across cities, which may result from its increasing popularity. We 
build a model of location choice and commuting which places no a priori restriction on the 
location of residence relative to the location of job. We divide the continental United States 
into 4,502 locations, and allow each worker to freely choose a pair of residence and job sites. 
Some workers are able to substitute on-site effort with work done from home. Being able to 
produce output at home saves them from costly commuting, and may induce them to choose a 
more distant residence location. On the other hand, when working remotely, they have a 
different level of productivity and have to procure floorspace for a home office. Their choice 
also depends on a preference shifter which we label work from home aversion and which 
represents tastes, norms, and institutional policies regarding remote work. We show that, 
because telework allows firms to hire workers from a broader “catchment area,” the range of 
parameter values for which a unique equilibrium is guaranteed is narrower than in a 
conventional model. 

We calibrate our model to be consistent with key facts about pre-2020 telecommuting. Both 
the opportunity to telecommute, and commuting choices of remote-capable workers, are 
allowed to differ for college and non-college educated workers, and for workers in tradable and 
non-tradable industries, consistent with the data. Our framework is also consistent with 
observed wage differences between remote and on-site workers, the observed distribution of 
commuting frequencies, and the observed spatial distribution of remote worker residences 
relative to their employers’ job sites. 
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We calibrate the elasticity of substitution between remote and on-site work, the relative 
productivity of remote work, and the work from home aversion, separately for each sector and 
education level. While the values of work from home aversion are similar for all types, the 
productivity of remote work is higher for the college-educated and for workers in tradable 
industries, and the elasticity of substitution is lower for those who work in the tradable sector. 

We simulate a permanent increase in remote work in the United States by lowering the work 
from home aversion, and find results which are nuanced and non-monotonic. Workers who can 
work from home decentralize, ending up much farther from their jobs. Those who cannot work 
remotely move closer to their workplaces. Around two-thirds of these relocations occur across 
metro areas, and the remaining one-third within metro areas, underlining the importance of 
allowing for both types of moves. 

Jobs in non-tradable industries follow the mass of residents towards suburbs and small cities. In 
tradable industries, broader geographic competition for remote workers allows both low-
density and the very most central locations to add jobs. Most big cities lose population but 
those with especially competitive city centers, like New York City, grow. Floorspace prices fall in 
dense areas and increase in less dense locations. We show that our counterfactual results are a 
robust predictor of changes in population seen year-over-year between December 2019 and 
December 2021, both within and across metro areas, as well as of housing rents and prices 
within metro areas. 

We find that income inequality across locations falls, as workers living in a broader set of 
locations are able to access high-paying jobs in “superstar” cities. Welfare of those who can 
work from home goes up, as they commute less often and are able to choose location pairs 
with higher realizations of idiosyncratic preference shocks. Those who cannot work from home 
do not benefit from these changes, and also face increased competition from remote-capable 
workers for the highest-paying jobs. As a result, they experience welfare losses. Welfare effects 
hinge on the extent to which telework contributes to productivity externalities at the 
workplace. In our baseline scenario, we assume that remote work does not contribute at all. 
This means that the increase in remote work leads to a decline in average firm productivity. If 
we assume that remote work contributes fully to these externalities, most of the welfare losses 
suffered by non-remote workers are canceled. 

Our quantitative and disaggregated approach helps us to address a key open question in the 
remote work literature-was Covid-19 primarily a technology shock affecting remote work 
productivity, or were changes in tastes, norms, and institutional policies more important?1 We 
show that assuming increases in telecommuting are caused solely by an increase in remote 
work productivity, and not in work from home aversion as in our main counterfactual, leads to 
implausible wage predictions, which drive population movements that are poorly correlated 
with the 2019–2021 data. While not conclusive, this evidence suggests that the more important 

 

1 Barrero, Bloom, and Davis (2021), e.g., promote the primacy of a shift in norms and attitudes, while 
Davis, Ghent, and Gregory (2022) argue for a shock to productivity. 
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effect of the Zoompocalypse of 2020 was a shift in norms and attitudes, rather than 
improvements in productivity. 

1.1. Related Literature 

Several other recent papers also study the effects of remote work on cities. Behrens, Kichko, 
and Thisse (2021), Brueckner, Kahn, and Lin (2021), Davis, Ghent, and Gregory (2022), and 
Kyriakopoulou and Picard (2021) develop stylized spatial equilibrium models with on-site and 
remote work, and study the implications of greater work from home on the demand for 
floorspace, productivity, income inequality, and city structure. Relative to these more stylized 
approaches, our quantitative framework (1) relaxes artificial restrictions on how far away 
workers can live from their jobs; (2) allows the study of changes not only in residence, but also 
the location of jobs; (3) allows for, and finds, non-monotonic movements of residents and jobs, 
in which the smallest cities gain most but the very largest cities decline less, and in some cases, 
also gain; (4) finds an important role for idiosyncratic location preferences as a motivation for 
remote worker residence changes. We model telecommuting as an endogenous choice, a 
feature shared only with Davis, Ghent, and Gregory (2022) from the list above, which allows us 
to speak to the motivations and contributing factors of the shift towards remote work. 

Among quantitative studies of telework, Lennox (2020) builds a quantitative spatial model of 
Australia and studies a fall in transport costs as a proxy for an increase in remote work. 
Delventhal, Kwon, and Parkhomenko (2022) build a quantitative spatial model limited to a 
single urban area—Los Angeles—in which workers are homogeneous and work from home 
behavior is exogenous. 

Monte, Redding, and Rossi-Hansberg (2018) analyze the U.S. system of cities using a model in 
which workers may commute between counties—an approach which we extend by including 
many small locations within each urban county to study intra-city, as well as inter-city, 
adjustments. Also related are recent papers which use models of joint job and residence choice 
at the city level, such as Ahlfeldt, Redding, Sturm, and Wolf (2015). We contribute to this 
literature by extending the toolbox to include a full-fledged model of working from home. 

Our paper also follows an earlier literature studying the impact of communication technologies 
and telework, which includes contributions from Gaspar and Glaeser (1998), Ellen and 
Hempstead (2002), Safirova (2003), Glaeser and Ponzetto (2007), Rhee (2008), and Larson and 
Zhao (2017). 

Yet another strand of recent research empirically studies movement of residents and changes 
in real estate prices during the pandemic. Examples include Althoff, Eckert, Ganapati, and 
Walsh (2021), Brueckner, Kahn, and Lin (2021), Haslag and Weagley (2021), Li and Su (2021), 
Gupta, Peeters, Mittal, and Van Nieuwerburgh (2021), Liu and Su (2021), Rosenthal, Strange, 
and Urrego (2021), and De Fraja, Matheson, and Rockey (2021), among others. 

The remainder of the paper is organized as follows. Section 2 documents key facts about pre-
2020 remote work, and presents evidence related to its future trajectory. Section 3 describes 
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the theoretical framework. Section 4 describes the data and the methodology used to quantify 
the model, and demonstrates how the model is congruent with the facts shown in Section 2. 
Section 5 presents the results of the counterfactual experiments; tests the predictions of our 
model against local changes in residents and real estate prices since March 2020; and provides 
evidence for the preference shock as the driver of the rise in work from home during Covid-19. 
Section 6 concludes. 

2. Remote Work: Past and Present 

In this section we establish facts about telecommuting prior to 2020, and present evidence to 
support our interpretation of Covid-19 as a shock to the preference for remote work. This will 
motivate the way we build the model as well as how we approach the counterfactual exercise. 

Our data is explained in more detail in Appendix A. The data can be accessed at 
https://doi.org/10.7910/DVN/IJSQEY 

2.1. The Who, What and Where of U.S. Telework 

In order to construct a sensible model of remote work in the U.S. context, we should first make 
ourselves familiar with some basic facts. First of all, who can telecommute, and of those, who 
actually does? Second, what does this telecommuting entail? In particular, how frequently do 
remote workers work from home, and what are their average wages relative to non-remote 
workers? Third, where do telecommuters tend to live? 

To address the first question, we subdivide the work force by education level and by industry. 
College workers have obtained a four-year degree or more, and non-college have not. Tradable 
industries are 2-digit NAICS categories whose products are often sold far from the location of 
origin, while non-tradable industries are categories whose products are mostly sold locally.2 
Using data on full-time workers in the 48 contiguous United States and Washington, D.C. from 
the American Community Survey (ACS), we calculate that the U.S. workforce between 2012–
2016 was composed of 28.9% college workers, 12.3% in tradable and 16.6% in non-tradable 
industries; and 71.1% non-college workers, 28.8% in tradable and 42.3% in non-tradable 
industries. 

Telecommutability, i.e., the ability to telecommute, differs sharply between these categories. 
Combining occupational classifications from Dingel and Neiman (2020) with our data, we find 
that 33.6% of workers in our sample have jobs that can be done from home. We also find that 
college workers and those in tradable industries are more likely to have such a job—an 
observation we label Stylized Fact #1. As shown in Figure 1, 68.8% of college workers in 

 

2 We use the BEA 2012 NAICS categories and divide them as follows. Tradable: Agriculture, forestry, fishing and 
hunting, and mining; Manufacturing; Wholesale trade; Transportation and warehousing, and utilities; Information; 
Finance, insurance, real estate and rental and leasing; and Professional, scientific, management, administrative, 
and waste management services. Non-tradable: Educational, health and social services; Arts, entertainment, 
recreation, accommodation and food services; Other services (except public administration); and Public 
administration. Excluded: Armed Forces. 

https://doi.org/10.7910/DVN/IJSQEY
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tradable industries have jobs that can be done mostly or completely from home, compared to 
just 18.9% of non-college workers in non-tradable industries.3 

These differences are compounded by further gaps in telecommuting uptake. To measure 
uptake, we use data from the 2018 Survey of Income and Program Participation (SIPP); see 
Appendix Section A.1 for more details. Focusing on full-time workers who are not self-
employed, we find that 38% of college workers in tradable industry with telecommutable 
occupations actually do work from home at least one full paid day a week; while uptake for 
non-college, non-tradable workers is only 21%.4 We dub these gaps by education and industry 
Stylized Fact #2. 

 

Figure 1. Telecommutability and uptake 
Note: Total bar length corresponds to the share of each worker type in the labor force. Dark-gray areas represent 
workers who report at least one paid full day/week worked from home. Light-gray areas represent workers with 
telecommutable professions who do not work from home. White areas represent workers in non-telecommutable 
occupations. Percentages on the graph report the fraction of each worker type with each commuting status. 

With what frequency do remote workers dial it in from home? Table 1 provides an answer. 
Using the data from SIPP, we find that a notable feature of the distribution for each worker 
category is bi-modality: most are full-time on-site or full-time at home, with few workers in 
between. We call this Stylized Fact #3.5 

 

3 Differences in telecommutability by industry and education have been previously documented by Dingel and 
Neiman (2020) and Mongey, Pilossoph, and Weinberg (2020). 
4 We calculate 26.1/(26.1 +  42.7)  ≈ 0.38, 𝑎𝑛𝑑 3.9/(3.9 +  15.0)0.21, from Figure 1. 
5 An advantage of the SIPP data is that it allows us to calculate numbers for each frequency from a single data 
source applying a consistent methodology. Mas and Pallais (2020) also reports some numbers related to work from 
home frequency, but the variance in definitions across the patchwork of data sources obscures the bimodality that 
we find here. Another advantage of SIPP is that the sample sizes are large enough for us to focus on full-time 
workers, and that it counts full paid days worked from home. The 2017 Leave and Job Flexibility module of the 
American Time Use Survey has smaller sample size and counts any day when the majority of work was done from 
home, regardless of whether that work was paid or not, and regardless of whether it was a full day or just an hour 
or two. We believe that these differences are why this survey reports somewhat different patterns, which can be 
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Table 1. Frequencies of working from home, 2018 

  College Non-college 

WFH Frequency Overall Tradable Non-Tradable Tradable Non-Tradable 

5 days per week 5.6% 15.0% 6.7% 5.2% 2.7% 

4 days per week 0.2% 0.5% 0.5% 0.2% 0.1% 

3 days per week 0.3% 0.9% 0.4% 0.3% 0.1% 

2 days per week 0.7% 1.9% 1.4% 0.5% 0.3% 

1 day per week 2.3% 7.8% 3.7% 1.6% 0.7% 

<1 day per week 90.8% 73.9% 87.3% 92.3% 96.2% 

Note: The table summarizes the share of all workers, as well as workers in each education-industry group, that 
report having a certain number of paid full days a week worked from home from SIPP. Self-employed workers are 
excluded. 

How do the earnings of telecommuters compare to those who work full-time in the office? To 
answer this question, we estimated hourly earnings controlling for age, sex, race, industry, 
occupation, and the public-use microdata area (PUMA) of residence separately for workers who 
belong to a telecommutable occupation but report working full time on site and workers who 
work full time from home. In Table 2 we report that at least from 2012–2016, remote workers 
did not appear to earn any less on average than their counterparts who belonged to a 
telecommutable occupation but worked on-site full time; see Appendix Section A.2 for more 
details on the data. On the contrary, for every category except for non-college workers in non-
tradable industries, we observe a modest work from home wage premium. We call this Stylized 
Fact #4.6 

Table 2. Relative earnings of telecommuters 

 Non-college College 

Non-tradable -1.5% +2.4% 

Tradable +2.6% +5.2% 

Note: Hourly earnings of those who entirely worked from home last week, versus those who did not. ACS 2012-
2016, only for workers in telecommutable occupations, controlling for age, sex, race, industry, occupation, and 
geographical location using a linear regression. 

Finally, does the ability to telecommute affect workers’ location choices? Using data from the 
2017 National Household Transportation Survey (NHTS), we find a positive relationship 
between work-from-home frequency and distance to job site, as shown in Figure 2; see 

 

seen, for example, in Table 3 of the related Bureau of Labor Statistics news release: 
(https://www.bls.gov/news.release/flex2.t03.htm#cps_jf_table3.f.1). 
6 This does not necessarily mean that working from home is more productive. The observed premium is consistent 
with a wide variety of causes, including unobserved differences between remote and non-remote workers, and a 
possible work-from-home productivity bonus. Survey evidence from Barrero, Bloom, and Davis (2021) provides 
some support for the latter possibility. They find that workers forced to work from home during 2020–2021 
reported a nearly 8% increase in productivity on average. 

https://www.bls.gov/news.release/flex2.t03.htm#cps_jf_table3.f.1
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Appendix Section A.4 for more details on the data.7 We shall refer to this relationship as 
Stylized Fact #5. It is consistent with telework being a way of reducing the effective commuting 
cost. 

 

Figure 2. Telecommute frequency versus distance to workplace 
Note: Calculated from NHTS. 5 days/week: worked from home more than 90% of the days in a 21.67 day average 
work month; 4 days: between 90% and 70%, 3 days: between 70% and 50%, etc. 

2.2. Covid-19: A Telework Shock 

When the Covid-19 pandemic began in early 2020, lockdowns and distancing policies moved 
over one-third of the U.S. workforce from offices to their homes. Prior to the pandemic, no 
more than 8% of paid full workdays were remote.8 By early May 2020, 35% of workers who 
commuted daily before Covid-19 switched to working remotely (Brynjolfsson, Horton, Ozimek, 
Rock, Sharma, and TuYe, 2020). 

 

7 Zhu (2012) also found that telecommuters live at a farther distance from work than commuters. 
8 Based on 2018 SIPP data. This is in the upper range of numbers in Mas and Pallais (2020). 



 

 8 

 

Figure 3. Work from home during the Covid-19 pandemic 

This sudden upheaval sparked consternation in many but, in survey after survey of workers and 
managers, an interesting pattern emerged. It was all going rather better than almost anyone 
had expected. Companies and workers had found ways to adjust without losing too much 
productivity, and many found a lot to like about remote work. So much so, that surveys by 
Barrero, Bloom, and Davis (2021) suggest a full 22% of paid workdays will be remote even after 
the pandemic.9 

There are at least four hypotheses as to what the Covid-19 telework shock really was. None are 
mutually exclusive, though some may be more important than others. And the implications of 
each for the future of remote work are quite distinct. 

First, there is the view that working from home during the pandemic is a purely transitory 
phenomenon, and that once people are allowed to and feel safe they will flock straight back to 
the office. Second, there is the view that we have experienced a shock to preferences around 
working from home. Barrero, Bloom, and Davis (2021) take the position that working from 
home was always great but social norms and stigma limited it. They also document a positive 
change in attitude by the average worker towards telework after having actual experience with 
working from home. Third, events of the past two years may amount to a technology shock. 
The early months after March 2020 saw a burst of innovation directed at making remote work, 
work. New software was developed and widely adopted, new policies and procedures were put 
in place, sizable investments in remote-complementary physical capital were made, and 
individuals and organizations did a great deal of learning by doing. Fourth, it could be that work 

 

9 Other surveys indicate that remote work will be more common post-pandemic: Bartik, Cullen, Glaeser, Luca, and 
Stanton (2020), Ozimek (2020), Bick, Blandin, and Mertens (2021), inter alia. 
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mode is a coordination game with multiple equilibria—if everyone is in the office, workers want 
to be there, but if enough people go remote, workers prefer to stay home. 

The first hypothesis does not seem to be supported by the trends shown in Figure 3. The share 
of mandated remote work has fallen from 35% in May 2020 to 11% by the end of 2021. Over 
the same period, two measures of actual working from home—Bick and Blandin’s and Barrero, 
Bloom, and Davis’s—have remained roughly constant at around 40%. We therefore believe it is 
highly likely that some combination the latter three hypotheses are playing a role. In Section 5, 
we will present evidence that a preference shock is more plausible as a primary explanation for 
changes in work-from-home behavior than a technology shock. We leave the possible role of 
workplace coordination as a potential topic of future research. 

3. Model 

Consider a national economy which consists of a finite set ℐ of discrete locations. Each location 
is populated by a continuous measure of workers who are distinguished by two characteristics. 
First, each worker has a skill-level 𝑠 ∈ {𝐻, 𝐿}. College-educated workers (𝑠 =  𝐻) provide High-
skilled labor to employers, and non-college-educated workers (𝑠 =  𝐿) provide Low-skilled 
labor. Second, a worker belongs to one of two types of occupations, 𝑜 ∈ {𝑇,𝑁} Some 
occupations are Telecommutable (𝑜 =  𝑇), i.e., amenable to remote work, while other 
occupations are Non-telecommutable (𝑜 =  𝑁)and must be performed on-site.10 The four 
types that are the product of {𝐻, 𝐿} and {𝑇, 𝑁} are taken to be exogenous and immutable. The 
economy-wide fraction of workers with education 𝑠 and occupation 𝑜 is denoted by 𝑙𝑠𝑜. Total 
employment of all types of workers is fixed and normalized to one, so that 𝑙𝐻𝑁  +  𝑙𝐿𝑁 + 𝑙𝐻𝑇  +
 𝑙𝐿𝑇 =  1. 

Three types of output are produced in each location: tradable goods and services, non-tradable 
goods and services, and floorspace, 𝑚 ∈ {𝐺, 𝑆, 𝐹}. Tradable output (𝑚 =  𝐺) is produced by 
combining college- and non-college labor with floorspace, and may be sold in any other location 
without paying a shipping cost. Non-tradable output (𝑚 =  𝑆) is produced using the same 
three inputs, but can only be sold in the location of origin.11 Floorspace (𝑚 =  𝐹) is produced 
by combining land with tradable goods, and may only be used in the same location it is built. 

Work at home is modeled as an option of telecommutable workers to split their work time 
between their job site and their residence. The productivity of at-home work relative to on-site 
work, the elasticity of substitution between the two work modes, as well as a preference 
parameter that we call the aversion to work from home vary across education levels and 
industries. A worker chooses to spend more time working at home when remote work is 

 

10 Examples of telecommutable occupations are architects and call center representatives. Examples of non-
telecommutable occupations include dentists and plumbers 
11 Tradable output is indexed 𝑚 =  𝐺 as in our data it consists largely (though not entirely) of Goods, while non-
tradable is indexed 𝑚 =  𝑆 for Services, for the same reason. 
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relatively productive, the aversion to it is relatively low, floorspace at home is relatively cheap, 
and the commute to the job site is long. 

3.1. Workers 

All workers make three types of choices. First, they choose which industry to work in; second, 
the locations of their job and their residence; and third, how to divide their resulting disposable 
income between spending on tradables, non-tradables and housing. Those belonging to 
telecommutable professions make one additional decision after choosing industry, job and 
residence location: how to divide their labor time between working in the office and working at 
home. The first three types of choices are not unusual in a quantitative spatial model and are 
discussed immediately below. The choice of how often to work from home is described later in 
Section 3.1.1. 

Consumption preferences are Cobb-Douglas. Optimal consumption choices for individual 
worker of education level 𝑠 and occupation 𝑜, conditional on a choice of location 𝑖 as a 
residence, 𝑗 as a worksite, and a choice of 𝑚 as an industry, imply the indirect utility of 

𝜇𝑚,𝑙𝜉𝑖𝑗,𝑙𝑣𝑚𝑖𝑗
s (𝜃) 

Here 𝜃 ∈ [0,1] is the fraction of time worked on-site, for the moment left undetermined; 𝜇𝑚,𝑙  

represents idiosyncratic preferences over industry, drawn from a Fréchet distribution  
Φind (𝜇) = exp (−𝜇−𝜎); and 𝜉𝑖𝑗,𝑙; represents idiosyncratic preferences over residence-

workplace pairs, also drawn from a Fréchet distribution Φloc (𝜉) = exp (−𝜉−𝜎); The common 
component of indirect utility is 

𝑣𝑚𝑖𝑗
𝑠𝑜 (𝜃) ≡

𝑋𝑚𝑖
𝑠 𝐸𝑚𝑗

𝑠

𝑝𝑖
𝛽
𝑞𝑖

𝛾

𝑤̃𝑚𝑖𝑗
𝑠𝑜 (𝜃)

𝑑𝑖𝑗(𝜃)𝑔𝑖𝑗
                                                  (3.1) 

In this expression, 𝑝𝑖 is the price of non-tradables, 𝑞𝑖 is the price of floorspace, and 𝛽, 𝛾 ∈ (0,1) 
are the expenditure shares of these two categories. 𝑋𝑚𝑖

𝑠  is a residential amenity and 𝐸𝑚𝑗
𝑠  is an 

employment amenity. Disposable income 𝑤̃𝑚𝑖𝑗
𝑠𝑜  depends on 𝜃 in a way which we will discuss 

later in this section. The disutility of commuting 𝑑𝑖𝑗
𝑠𝑜(𝜃) also depends on 𝜃 and is given by 

𝑑𝑚𝑖𝑗
𝑆𝑂 (𝜃) ≡ 𝜃𝑒𝜅𝑡𝑖𝑗 + (1 − 𝜃)𝜍𝑚

𝑆                                                 (3.2) 

where 𝑡𝑖𝑗 is the time in minutes required to commute from location 𝑖 to 𝑗; 𝜅 >  0 is the 

elasticity of the disutility to commute time; and 𝜍𝑚
𝑆 > 0 represents the relative preference of an 

𝑠-educated worker in industry 𝑚 to work in the office, as opposed to at home. 

In what follows, we will refer to 𝜍𝑚
𝑆  as the “aversion to telecommuting.” Assuming that 𝜍𝑚

𝑆  takes 
a value greater than 1 (as it does for all worker categories in our calibration), it lends itself to a 
range of interpretations, not all of which fall within the realm of worker “preferences” or 
average tastes per se. For example, they could also reflect worker concerns about career 
advancement, which may be easier to achieve in the office; or restrictions against work-from-
home imposed by convention, or bias, or employer regulations. 
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The worker only experiences the part of disutility which comes from commuting on the days 
she commutes: the first term of equation (3.2) ranges from 0 when 𝜃 =  0, to 𝑒𝜅𝑡𝑖𝑗 when 𝜃 =
 1. The second term, representing disutility from remote work, has the opposite relationship 
with 𝜃, ranging from 0 when 𝜃 =  1 to 𝜍𝑚

𝑆  when 𝜃 =  0. 

We also allow for reasons not directly related to commuting to cause workers to prefer shorter 
commutes between work and home.12 We represent these with the distance penalty  
𝑔𝑖𝑗 ≡ 𝑒𝜏𝑡𝑖𝑗, with 𝜏 > 0 determining the strength of distance dependence.13 This dependence is 

necessary for model predictions to conform with the distance-commute frequency relationship 
reported in Section 2: even workers who rarely come to the office tend to live at commutable 
distances from their job site. In Appendix Section I.1 we recalibrate the benchmark model and 
repeat our main counterfactual exercise assuming that 𝑔𝑖𝑗 = 1 so the whole cost of distance is 

loaded onto commuting. 

Let us designate the optimal choice of 𝜃, discussed later, as 𝜃𝑚𝑢𝑗
𝑠𝑜 ; and the associated indirect 

utility, disposable income, and disutility of commuting as 𝑣𝑚𝑢𝑗
𝑠𝑜 , 𝑤̃𝑚𝑢𝑗

𝑠𝑜 , and 𝑑𝑚𝑢𝑗
𝑠𝑜 . Given indirect 

utilities characterized by equation (3.1), and the Fréchet distribution of shocks, it is 
straightforward to show that the measure of workers of education level 𝑠 and occupation 𝑜 
who choose industry m, residence 𝑖 and job site 𝑗 is given by 

𝜋𝑚𝑖𝑗
𝑠𝑜 = 𝑙so𝜋𝑚

so𝜋𝑖𝑗∣𝑚′
𝑠𝑜                                                         (3.3) 

where 𝜋𝑚
so is the probability that a worker with education level 𝑠 and occupation 𝑜 chooses 

industry 𝑚, and 𝜋𝑚𝑖𝑗
𝑠𝑜 is the probability that such a worker chooses the location pair (𝑖;  𝑗), 

conditional on having chosen industry m. These two probabilities are given by 

𝜋𝑚
𝑠𝑜 =

[∑𝑖  ∑𝑗  (𝑣𝑚𝑖𝑗
𝑠𝑜 )

𝜖
]

𝜎
𝜖

∑𝑚′  [∑𝑖  ∑𝑗  (𝑣𝑚′𝑖𝑗
𝑠𝑜 )

𝜖
]

𝜎
𝑒

  and  𝜋𝑖𝑗∣𝑚
𝑠𝑜 =

(𝑣𝑚𝑖𝑗
𝑠𝑜 )

𝜖

∑𝑖′  ∑𝑗′  (𝑣𝑚𝑖′𝑗′
𝑠𝑜 )

𝜖                             (3.4) 

Choice probabilities 𝜋𝑚𝑖𝑗
𝑠𝑜  allow us to characterize aggregate allocations of residents and jobs. 

For example, the residential population (indexed by 𝑅) of type (𝑠, 𝑜) workers in location 𝑖 is 

𝑁𝑅𝑖
𝑠𝑜 = ∑𝑚  ∑𝑗  𝜋𝑚𝑖𝑗

𝑠𝑜                                                             (3.5) 

Also, the supply of on-site work days (indexed by 𝑊𝐶) by workers of skill level 𝑠 at job site 𝑗 and 
the supply of remote work days (indexed by 𝑊𝑇) are given by 

𝑁𝑊𝐶𝑗
𝑠 = ∑𝑚  ∑𝑖  [𝜃𝑚𝑖𝑗

𝑠𝑇 𝜋𝑚𝑖𝑗
𝑠𝑇 + 𝜋𝑚𝑖𝑗

𝑠𝑁 ]  and  𝑁𝑊𝑇𝑗
𝑠 = ∑𝑚  ∑𝑖  (1 − 𝜃𝑚𝑖𝑗

𝑠𝑇 )𝜋𝑚𝑖𝑗
𝑠𝑇           (3.6) 

 

12 We see three possible interpretations: (1) Spatial frictions in the process of finding jobs and forming attachments 
to residential locations, leading to spatial covariance in idiosyncratic preferences. (2) Employees with longer tenure 
on-site, who have already established residential attachments nearby, may be more likely to begin remote work. 
(3) Company policies may discourage moving far away, perhaps due to the option value of occasional office visits. 
13 An alternative specification could embed this distance penalty in the distribution of preference shocks, so that 
workers are less likely to draw a shock with high value for a pair of distant locations. 
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Finally, the expected utility (and our measure of welfare) of a worker with education 𝑠 and 
occupation 𝑜 is 

𝑉𝑠𝑜 = Γ(
𝜖 − 1

𝜖
) Γ (

𝜎 − 1

𝜎
) [∑𝑚  [∑𝑖  ∑𝑗  (𝑣𝑚𝑖𝑗

𝑠𝑜 )
𝜖
]
𝜎
𝑐 ]

1
𝜎

,                            (3.7) 

where Γ(. ) is the Gamma function. 

3.1.1. Allocation of Time Between On-Site and Remote Work 

Workers supply one unit of work time inelastically. This is a common assumption. What is 
different in our model is that some workers—those in telecommutable occupations—choose 
how to divide their work time between the job site and home. In a given work location, 
whether on-site or at home, labor time n is combined with floorspace h in a Cobb-Douglas 
production function to produce effective labor: 𝑛𝛼ℎ1−𝛼.14 

We assume that tasks done at home are different from those done at the job site. Reflecting 
this, overall effective labor supply of a worker is a constant elasticity of substitution 
combination of labor on-site and at home, with the elasticity of substitution for each education 
level and industry 𝜍𝑚

𝑆 > 1:15 

𝑧𝑚
𝑠𝑜(𝜃, ℎ𝐶 , ℎ𝑇) = [(𝜃𝛼ℎ𝑊𝐶

1−𝛼)
𝜍𝑚
𝑠 −1
𝜍𝑚
𝑠

+ (𝑣𝑚
𝑠 (1 − 𝜃)𝛼ℎ𝑊𝑇

1−𝛼)
𝜍𝑚
𝑠 −1
𝜍𝑚
𝑠

]

𝜍𝑚
𝑠

𝜍𝑚
𝑠 −1

.                 (3.8) 

Parameter 𝑣𝑚
𝑠 >  0 is the relative productivity of working from home. It represents all possible 

reasons why a given worker may produce a different quantity of output while working at home, 
such as a different work environment, lack of supervision, or the difficulty of coordinating with 
co-workers. Variables ℎ𝑊𝐶  and ℎ𝑊𝑇 are the amounts of on-site and home floorspace, 
respectively, rented by the worker.16 A worker of education level s in industry m takes as given 
that they will be paid a wage 𝑤𝑚𝑗

𝑠  for each unit of effective labor they supply to their employer. 

Thus, the worker’s disposable income is the compensation paid by the firm less floorspace 
expenses, 

𝑤̃𝑚𝑖𝑗
𝑠𝑜 (𝜃) ≡ 𝑤𝑚𝑗

5 𝑧𝑚
𝑠 (𝜃, ℎ𝑊𝑐 , ℎ𝑊𝑇) − 𝑞𝑗ℎ𝑊𝐶 − 𝑞𝑖ℎ𝑊𝑇. 

 

14 The need to use floorspace to produce output from home is consistent with Stanton and Tiwari’s (2021) finding 
that, conditional on location, income, and family structure, telecommuters own larger houses. 
15 Imperfect substitution between on-site and remote work implies that all workers in telecommutable occupations 
choose an interior 𝜃. 
16 For simplicity of exposition, we specify floorspace rent as a choice by the worker; firms’ payments to workers 
compensate both labor and floorspace. There exists an isomorphic specification in which firms rent floorspace 
directly 
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Income-maximizing choices imply the following floorspace expenditures of a worker with 
education 𝑠  in occupation 𝑜  who lives in location 𝑖 , works in industry 𝑚 in location 𝑗 , and 
commutes to the job site a fraction 𝜃 of time: 

𝑞𝑗ℎ𝑚𝑖𝑗,𝑊𝐶
𝑠𝑜 (𝜃) = ((1 − 𝛼)𝑤𝑚𝑗

5 )

1
𝑎
[(𝜃𝛼𝑞𝑗

−(1−𝛼)
)
𝜍𝑚
𝑠 −1

Ω𝑚𝑖𝑗
𝑠 (𝜃)]

1
1+𝛼(𝜍𝑚

𝑠 −1)
              (3.9) 

𝑞𝑖ℎ𝑚𝑖𝑗,𝑊𝑇
𝑠𝑜 (𝜃) = ((1 − 𝛼)𝑤𝑚𝑗

𝑠 )

1
𝛼

[(𝑣𝑚
𝑠 (1 − 𝜃)𝛼𝑞𝑖

−(1−𝑎)
)
𝜍𝑚
𝑠 −1

Ω𝑚𝑖𝑗
𝑠 (𝜃)]

1
1+𝑎(𝜍𝑚

𝑠 −1)
         (3.10)  

where 

Ω𝑚𝑖𝑗
𝑠𝑜 (𝜃) ≡ [(𝜃𝛼𝑞𝑗

−(1−𝛼)
)

𝜍𝑚
𝑠 −1

1+𝛼(𝜍𝑚
𝑠 −1) + (𝑣𝑚

𝑠 (1 − 𝜃)𝛼𝑞𝑖
−(1−𝛼)

)

𝜍𝑚
𝑠 −1

1+𝛼(𝜍𝑚
𝑠 −1)]

1
𝛼
1+𝛼(𝜍𝑚

𝑠 −1)

𝜍𝑚
𝑠 −1

.   (3.11) 

Then the optimal effective labor of a worker who rents optimal amounts of floorspace and 

commutes to work with frequency 𝜃 is 𝑧𝑚𝑖𝑗
so (𝜃) = ((1 − 𝛼)𝑤𝑚𝑗

5 )
1−𝑎

𝛼 Ω𝑚𝑖𝑗
so (𝜃) while his 

disposable income is  

𝑤̃𝑚𝑖𝑗
𝑠𝑜 (𝜃) = 𝛼(1 − 𝛼)

1−𝑎
𝑎 (𝑤𝑚𝑗

𝑠 )
1
𝑎Ω𝑚𝑖𝑗

𝑠𝑜 (𝜃)                                        (3.12) 

Finally, in order to choose how much time to work on-site and at home, a telecommutable 
worker compares the benefits and costs of working on-site. Maximizing (3.12) with respect to 
𝜃, we obtain 

𝜃𝑚𝑖𝑗
𝑠𝑇 = [1 + (𝑣𝑚

𝑠 (
𝑞𝑗

𝑞𝑖
)
1−𝛼

)

𝜍𝑚
𝑠 −1

(
𝑒𝑥𝑡𝑖𝑗

𝜍𝑚
0 )

1+𝛼(𝜍𝑚
𝑠 −1)

]

−1

.                         (3.13) 

Thus, a worker will choose to work from home more often, i.e., choose lower 𝜃, when telework 
is relatively productive (large 𝑣𝑚

𝑠 ), floorspace at home is relatively cheap (large 𝑞𝑗/𝑞𝑖) the 

aversion to work from home is low (small 𝜍𝑚
𝑠 ), and the commuting cost is high (large 𝑡𝑖𝑗). 

3.2. Firms 

In each location there are many perfectly competitive firms producing tradable products, and 
likewise producing non-tradable products. A firm in industry m and location 𝑗 produces output 

𝑌𝑚𝑗 = 𝐴𝑚𝑗 [𝜔𝑚𝑗(𝑦𝑚𝑗
𝐿 )

𝜉−1
𝜉 + (1 − 𝜔𝑚𝑗)(𝑦𝑚𝑗

𝐻 )
𝜉−1
𝜉 ]

𝜉
𝜉−1

                        (3.14) 

where 𝑦𝑚𝑗
𝑠  represents the total effective labor rented from workers with education 𝑠, 𝜔𝑚𝑗 

determines the weight of non-college labor in the production function, 𝐴𝑚𝑗 j is the productivity 

of industry 𝑚 in location 𝑗, and 𝜉 is the elasticity of substitution between college and non-
college labor. In our setup, the decision of how to divide labor time between on-site and at-
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home work is made by the worker, and the firm is ready to purchase however much effective 
labor results from the worker’s choices. 

The firm chooses labor inputs 𝑦𝑚𝑗
𝑠  so as to maximize profit: 𝑝𝑚𝑗𝑌𝑚𝑗 − 𝑤𝑚𝑗

𝐿 𝑦𝑚𝑗
𝐿 − 𝑤𝑚𝑗

𝐻 𝑦𝑚𝑗
𝐻 : 

Profit maximization implies the following equilibrium relationship between non-college wages 
and output prices in each industry, 

𝑤𝑚𝑗
𝐿

𝑝𝑚𝑗
= 𝐴𝑚𝑗𝜔𝑚𝑗

𝜉
𝜉−1

[1 + (
1 − 𝜔𝑚𝑗

𝜔𝑚𝑗
)

𝜉

(
𝑤𝑚𝑗

𝐿

𝑤𝑚𝑗
𝐻 )

𝜉−1

]

1
𝜉−1

                          (3.15) 

Since there are no transport costs for shipping the output of the tradable sector, there is an 
economy-wide price for tradable products, normalized to 1: 𝑝𝐺𝑗 = 1 for all 𝑗. Firms in the non-

tradable sector can only sell their product locally and thus 𝑝𝑆𝑗 = 𝑝ℎ varies by location. 

Meanwhile, optimal use of inputs implies that in each industry m and each location 𝑗, the 
college premium has the following relationship to the relative input level of each skill type: 

𝑤𝑚𝑗
𝐻

𝑤𝑚𝑗
𝐿 =

1 − 𝜔𝑚𝑗

𝜔𝑚𝑗
(
𝑦𝑚𝑗

𝐿

𝑦𝑚𝑗
𝐻 )

1
𝜉

                                                   (3.16) 

3.3. Developers 

Floorspace is demanded by workers both for residential use and as a production input. In each 
location, there is a large number of perfectly competitive developers which produce floorspace 
using technology 

𝐻𝑖 = 𝐾𝑖
1−𝜂𝑖(𝜙𝑖𝐿𝑖)

𝜂𝑖 ,                                                         (3.17) 

where 𝐾𝑖 and 𝐿𝑖 are the inputs of the tradable good and land, and 𝜂𝑖 is the location-specific 
share of land in the production function. We make a simplifying assumption that the production 
of floorspace does not employ labor directly. Each location is endowed with Λ𝑖 units of 
buildable land which serves as the upper bound on the developers’ choice of land: 𝐿𝑖 ≤ Λ𝑖. 
Parameter 𝜙𝑖 stands for the local land-augmenting productivity of floorspace developers.17 Let 
𝑞𝑖 be the equilibrium price of floorspace. Then the equilibrium supply of floorspace in location 𝑖 
is 

𝐻𝑖 = 𝜙𝑖(1 − 𝜂𝑖)
1−𝜂𝑖
𝜂𝑖 𝑞

𝑖

1−𝜂𝑖
𝜂𝑖 𝐿𝑖 .                                               (3.18) 

 

17 The productivity may depend on terrain, climate, land use regulations, etc. 
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3.4. Market Clearing 

There are five markets that need to clear in each location in an equilibrium: the market for 
college labor, the market for non-college labor, the market for non-tradable output, the market 
for floorspace, and the market for land.18 

Labor markets clear when the demand for effective labor of each education level equals the 
supply, 𝑦𝑚𝑗

𝑠 = ∑𝑜  ∑𝑖  𝜋𝑚𝑖𝑗
𝑠𝑜 𝑧𝑚𝑖𝑗′

𝑠𝑜  which implies that equilibrium effective labor supply is 

𝑦𝑚𝑗
𝑠 = ((1 − 𝛼)𝑤𝑚𝑗

𝑠 )
1−𝛼
𝛼 ∑0  ∑𝑖  𝜋𝑚𝑖𝑗

𝑠𝑜 Ω𝑚𝑖𝑗
𝑠𝑜                                       (3.19) 

Applying equation (3.19) to equation (3.16), we obtain the equilibrium college wage premium, 

𝑤𝑚𝑗
𝐻

𝑤𝑚𝑗
𝐿 = (

1 − 𝜔𝑚𝑗

𝜔𝑚𝑗
)

𝛼𝜉
1+𝛼(𝜉−1)

(
∑0  ∑𝑖  𝜋𝑚𝑖𝑗

𝐿𝑜 Ω𝑚𝑖𝑗
𝐿𝑜

∑0  ∑𝑖  𝜋𝑚𝑖𝑗
𝐻𝑜 Ω𝑚𝑖𝑗

𝐻𝑜 )

𝛼
1+𝛼(𝜉−1)

                       (3.20) 

Wage levels can then be found by plugging in this expression in equation (3.15). 

Profit-maximization and zero profits imply the following equilibrium supply of the non-tradable 
product in location 𝑗, 

𝑝𝑆𝑗𝑌𝑆𝑗 = (𝑝𝑆𝑗𝐴𝑆𝑗)
1
𝛼(1 − 𝛼)

1−𝛼
𝛼 𝜔

𝑆𝑗

𝜀
(𝜉−−1)

(∑  

0

∑ 

𝑖

𝜋𝑆𝑖𝑗
𝐿𝑜 Ω𝑆𝑖𝑗

𝐿𝑜 ) [1 + (
1 − 𝜔𝑆𝑗

𝜔𝑆𝑗
)

𝜀

(
𝑤𝑆𝑗

𝐿

𝑤𝑆𝑗
𝐻)

𝜀−1

]

1+𝛼(𝜉−1)
𝛼(𝜉−1)

 (3.21) 

Let total disposable income in residential location 𝑖 be 𝑊𝑖 ≡ Σ𝑠Σ0Σ𝑚Σ𝑗𝜋𝑚𝑖𝑗
𝑠0 𝑤̃𝑚𝑖𝑗

𝑠𝑜 . Non-

tradables are demanded only by workers for consumption and total spending on the non-
tradable output in any residential location 𝑖 is 𝛽𝑊𝑖. This allows us to construct the following 
market-clearing condition in the market for non-tradables: 

𝑝𝑆𝑗𝐴𝑆𝑗 =
(𝛽𝑊𝑖)

𝛼

(1 − 𝛼)1−𝛼𝜔
𝑆𝑗

𝜉
𝜉−1

(∑  𝑜 ∑  𝑖 𝜋𝑆𝑖𝑗
𝐿𝑜Ω𝑆𝑖𝑗

𝐿𝑜 )
𝛼

[1 + (
1 − 𝜔𝑆𝑗

𝜔𝑆𝑗
)

𝜉

(
𝑤𝑆𝑗

𝐿

𝑤𝑆𝑗
𝐻)

𝜉−1

]

−
1+𝛼(𝜉−𝜉−1)

𝛼(𝜉−1)

 (3.22) 

Demand for residential floorspace in location 𝑖 is 𝐻𝑅𝑖 = 𝛾𝑊𝑖/𝑞𝑖. Demand for on-site office 
space is 𝐻𝑊𝐶𝑖 = ∑𝑠 ∑𝑜 ∑𝑚 ∑𝑗 𝜋𝑚𝑗𝑖

𝑠𝑜 ℎ𝑚𝑗𝑖,𝑊𝐶
𝑠𝑜 , and demand for home office space is 𝐻𝑊𝑇𝑖 =

∑𝑠 ∑𝑚 ∑𝑗 𝜋𝑚𝑖𝑗
𝑠𝑇 ℎ𝑚𝑖𝑗,𝑊𝑇

𝑠𝑇 . Then, total local floorspace demand is  

𝐻𝑖 = 𝐻𝑅𝑖 + 𝐻𝑊𝐶𝑖 + 𝐻𝑊𝑇𝑖 . (3.23) 

Floorspace demand also determines the demand for land. Land is owned by landlords and, 
since there are no alternative uses of land, it is optimal for landlords to sell all buildable land to 
developers: 𝐿𝑖 = Λ𝑖 for all 𝑖. Land owners receive a share 𝜂𝑖 of the total revenues from 

 

18 By Walras’ Law, the economy-wide market for tradables clears as long as the other I 5 local markets clear. 
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floorspace sales, 𝑞𝑖𝐻𝑖. The price per unit of land must then be equal to total earnings divided by 
the quantity of land:  

 𝑙𝑖 =
𝜂𝑖𝑞𝑖𝐻𝑖

Λ𝑖
. (3.24) 

Landlords use proceeds from land sales to consume the tradable good only, as in [?]. Thus, the 
welfare of landlords is simply the total value of land in the economy, ∑𝑖 𝑙𝑖Λ𝑖. Finally, optimal 
decisions of developers imply the following relationship between land prices and floorspace 
prices: 

 𝑞𝑖 =
1

𝜂
𝑖

𝜂𝑖(1−𝜂𝑖)
1−𝜂𝑖

(
𝑙𝑖

𝜙𝑖
)
𝜂𝑖

. (3.25) 

3.5. Externalities 

The productivity of industry 𝑚 in location 𝑗 is determined by an exogenous component, 𝑎𝑚𝑗, 

and an endogenous component that is increasing in the local density of on-site and remote 
employment:  

 𝐴𝑚𝑗 = 𝑎𝑚𝑗 (
𝑁𝑊𝐶𝑗+𝜓𝑁𝑊𝑇𝑗

Λ𝑗
)

𝜆

. (3.26) 

Parameter 𝜆 > 0 is the elasticity of productivity with respect to employment density, and 𝜓 ∈
[0,1] is the degree of remote workers’ participation in productive externalities. These 
externalities include learning, knowledge spillovers, and networking that occur as a result of 
face-to-face interactions between workers. When workers are working from home, they may 
not participate fully in interactions that give rise to these externalities. As we will see, the value 
of 𝜓 has important consequences for welfare effects of telecommuting. 

Similarly, the residential amenity in location 𝑖 is determined by an exogenous component, 𝑥𝑚𝑖
𝑠 , 

and an endogenous component that depends on the density of residents:  

 𝑋𝑚𝑖
𝑠 = 𝑥𝑚𝑖

𝑠 (
𝑁𝑅𝑖

Λ𝑖
)

𝜒
, (3.27) 

where 𝜒 > 0 is the elasticity of amenities with respect to the local density of residents.19 The 
positive relationship between residential density and amenities represents in reduced form the 
greater propensity for amenities, such as parks or schools, to locate in proximity to greater 
concentrations of potential users.20 

 

19 We abstract from spatial spillovers of productivity or amenities across locations. They are highly localized, as 
found in Ahlfeldt, Redding, Sturm, and Wolf (2015). and other studies. Given that locations in our quantitative 
model are relatively large, the effect of these spillovers may not be first-order. 
20 We assume that all workers contribute equally to amenity externalities at their location of residence. It is also 
possible that those who work at home more often contribute more to local amenities by spending more time in 
the area of their residence. 
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3.6. Equilibrium 

Given local fundamentals, 𝑎𝑚𝑗, 𝑥𝑚𝑖
𝑠 , 𝐸𝑚𝑗

𝑠 , 𝜙𝑖, 𝜂𝑖, and Λ𝑖; bilateral commute times, 𝑡𝑖𝑗; 

population shares, 𝔩𝑠𝑜; and economy-wide parameters, 𝜈𝑚
𝑠 , 𝜍𝑚

𝑠 , 𝔩𝑠𝑜, 𝜓, 𝛼, 𝛽, 𝛾, 𝜖, 𝜎, 𝜁𝑚
𝑠 , 𝜉, 𝜅, 𝜏, 

𝜆, and 𝜒; a spatial equilibrium consists of allocations of workers to industries, residences, and 
job-sites, 𝜋𝑚𝑖𝑗

𝑠𝑜 ; allocations of work time between on-site and remote, 𝜃𝑚𝑖𝑗
𝑠𝑜 ; productivities, 𝐴𝑚𝑗; 

residential amenities, 𝑋𝑚𝑗
𝑠 ; college and non-college wages, 𝑤𝑚𝑗

𝐻  and 𝑤𝑚𝑗
𝐿 ; effective labor 

supplies, 𝑦𝑚𝑗
𝑠 ; prices and supplies of floorspace, 𝑞𝑖 and 𝐻𝑖; prices and supplies of non-tradable 

goods, 𝑝𝑖 and 𝑌𝑆𝑖; and land prices, 𝑙𝑖; such that equations (3.3), (3.13), (3.26), (3.27), (3.15), 
(3.20), (3.19), (3.25), (3.18), (3.22), (3.21), and (3.24) are satisfied.  

3.6.1. Existence and Uniqueness 

While our model has a number of extensions compared to a “standard” quantitative spatial 
equilibrium model with commuting such as Ahlfeldt, Redding, Sturm, and Wolf (2015), our main 
innovation is the introduction of work from home. In Appendix Section B, we evaluate 
equilibrium properties of a simplified model with exogenous floorspace supply, single industry, 
and no heterogeneity in education or occupation, but with work from home. We show that, in 
general, the introduction of telecommuting narrows the range of parameter values for which a 
unique equilibrium is guaranteed. In a standard model, the extent to which a location with high 
exogenous productivity attracts employment is amplified via agglomeration externalities but is 
dampened as the number of workers willing to commute to this location daily is limited. In a 
model with work from home, such locations have a greater firm market access to potential 
workers (or “catchment area”) because they do not have to commute daily. As a result, even 
modest values of the productive externality parameter 𝜆 can lead to multiple equilibria. 

4. Quantification 

In this section we describe how we build our model into a quantitative description of industry, 
residence, workplace, and telecommuting decisions made by U.S. workers in the years leading 
up to 2020. We focus our analysis on the 48 contiguous United States and the District of 
Columbia. 

We define a model location as the intersection of a Census Public Use Microdata Area (PUMA) 
and a county.21 In densely populated areas, where there are many PUMAs to a county, each 
PUMA is a model location. This allows us to take advantage of geographically-detailed data and 
depict patterns within metro areas. In rural areas, where there may be several counties in a 
single PUMA, each location is a county. Defining locations this way and dropping two locations 
with missing wage data, we end up with 4,502 model locations. 

 

21 The Census Bureau designs PUMAs to have between 100,000 and 200,000 residents. Thus, large metropolitan 
areas have many model locations: The New York metro area has 147 distinct model locations. 
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4.1. Data 

Our next step is to populate these locations with relevant data. For each one, we use 
information on the resident population, the number of jobs, wages, floorspace prices, and non-
tradable output prices. We also use information on bilateral commuting flows and times. We 
focus on the period of 2012–2016.22 The total number of workers by education level and 
occupation type, 𝔩𝑠𝑜, is calculated from ACS data as described in Section 2. 

Residents, jobs, and commuting. To obtain information on resident population, jobs, and 
commuting flows, we turn to the LEHD Origin-Destination Employment Statistics (LODES2016) 
database. We use averaged data for the years 2012–2016. LODES provides workplace and 
residence job counts separately by education level or by industry at the Census block level, 
which we aggregate up to the level of our model locations. We divide NAICS categories into 
tradable and non-tradable industries and divide education levels into “college” and “non-
college” in the same way that we described in Section 2. LODES also provides commuting flows 
between each pair of locations. 

Wages. We use the Census Transportation Planning Products (CTPP2016) database and the 
American Community Survey (ACS2016) microdata for 2012–2016 to obtain estimates of 
average wage by industry 𝑚 and education 𝑠 for each location 𝑗: 𝑤̂𝑚𝑗

𝑠 . In our model, firms pay 

workers for their labor as well as for floorspace expenses. We convert observed wages 𝑤̂𝑚𝑗
𝑠  into 

their model counterpart 𝑤𝑚𝑗
𝑠  by applying commuting flows and effort predicted by the model. 

To estimate wage differences between on-site workers and telecommuters, we also use the 
ACS data. The data and our methodology are described in Appendix Sections A.3 and A.2. 

Non-tradable goods prices. We use the Bureau of Economic Analysis Regional Price Parities for 
the “Services other than real estate” category as a proxy for non-tradable output prices. We use 
data at the metropolitan statistical area (MSA) level, if available, and apply the same price level 
to all locations within a single MSA. For the remaining locations, we apply the state non-
metropolitan price level from the database. For each location we take the average across the 
years from 2012–2016. 

Floorspace prices. To obtain local rental prices of floorspace, we estimate hedonic rent indices 
for each PUMA using self-reported housing rents from the ACS for the period from 2012 to 
2016. Appendix Section A.5 provides more details. 

Commute times. Bilateral travel times are obtained from the CTPP survey data for the period 
2012–2016, with some imputations to fill in missing trajectories. Details can be found in 
Appendix Section A.6. 

 

22 The choice of the time period is motivated by the fact that our wage and commuting time data is aggregated at 
five-year intervals and this is the most recently available interval prior to the pandemic. 
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4.2. Parameterization 

Model parameters can be divided into three sets: those we set externally, those we estimate 
(both summarized in Table 3), and those we calibrate internally (summarized in Table 3). 

Table 3. Externally determined and estimated parameters 

Parameter Description Value Comments 

𝛾 Consumption share of housing 0.24 Davis and Ortalo-Magné (2011) 

𝛼 Labor share in production 0.82 Valentinyi and Herrendorf (2008) 

𝜉 Elasticity of substitution between 
college and non-college labor 

2 Middle of the 1.5-2.5 range in Card 
(2009) 

𝜎 Fréchet elasticity of industry shock 1.4 Lee (2020) 

𝜖 Fréchet elasticity of location shock 4.026 Estimated – see Section 4.2.2 

𝜆 Elasticity of local productivity to 
employment density 

0.086 Heblich, Redding, and Sturm (2020) 

𝜒 Elasticity of local amenity to 
population density 

0.172 Heblich, Redding, and Sturm (2020) 

𝜓 Contribution of telecommuters to 
productivity externalities 

{0,1} We run separate counterfactuals with 
𝜓 = 0 and 𝜓 = 1 

𝜅 + 𝜏 Elasticity of commuting cost to 
commuting time 

0.011 Average of estimates from Ahlfeldt, 
Redding, Sturm, and Wolf (2015) and 
Tsivanidis (2019) 

𝜂𝑖 Price elasticity of floorspace supply Various Baum-Snow and Han (2021) 

Note: The table lists parameters determined externally to the calibration process 

4.2.1. Externally Set Parameters 

We set the consumption share of housing, 𝛾 = 0.24, following Davis and Ortalo-Magné. (2011). 
Valentinyi and Herrendorf (2008) estimate that the combined share of land and structures in 
the U.S. is equal to 0.18. Thus, we set the labor share in the production of tradable and non-
tradable goods, 𝛼, equal to 0.82. The elasticity of substitution between college and non-college 
labor, 𝜉, is set to 2, in the middle of the range between 1.5 and 2.5 reported by Card (2009). We 
set the Fréchet elasticity of the distribution of industry choice shocks, 𝜎, equal to 1.4, following 
Lee (2020). We borrow the estimates of the elasticities of local productivity and amenities with 
respect to density from Heblich, Redding, and Sturm (2020), and set 𝜆 = 0.086 and 𝜒 = 0.172. 
To evaluate the sensitivity of our results to these two values, we run counterfactual 
experiments where each of these values is set to zero (see Section 5.3) Due to the lack of 
empirical evidence and appropriate calibration targets, we do not take a stance on the relative 
contribution of remote workers to the productive externalities, 𝜓. Instead, we will consider 
counterfactual scenarios with two extreme values: 𝜓 = 0 and 𝜓 = 1 (see Section 5.3). 
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In our model, the expected utility of a worker is decreasing in commute time for two reasons. 
First, greater commuting time increases the disutility of commuting (with elasticity 𝜅). Second, 
it increases the distance penalty (with elasticity 𝜏). Note that most existing urban models with 
commuting did not have remote work and, in terms of our model, had all workers have 𝜃 = 1. 

Therefore, because for a worker with 𝜃 = 1 we have 𝑔𝑖𝑗𝑑𝑚𝑖𝑗
𝑠𝑜 = 𝑒(𝜅+𝜏)𝑡𝑖𝑗, the term 𝜅 + 𝜏 in our 

model is analogous to the elasticity of the commuting cost with respect to commuting time in a 
model without remote work. Using the same functional form of the commuting cost, Ahlfeldt, 
Redding, Sturm, and Wolf (2015) estimate the elasticity of about 0.01, while Tsivanidis (2018) 
estimates a value of 0.012. We set 𝜅 + 𝜏 = 0.011, the average of these two estimates. Below 
we calibrate 𝜏 and thus identify 𝜅. 

To allow for the possibility that in our counterfactuals floorspace development responds 
differently to changes in demand across locations, we let the elasticity of floorspace supply, 
(1 − 𝜂𝑖)/𝜂𝑖, vary by location. Baum-Snow and Han (2021) estimate elasticities of floorspace 
supply with respect to prices for Census tracts in over 300 metro areas.23 We aggregate these to 
the level of our model locations using population weights. A nationwide map of elasticities at 
the level of model locations can be found in Figure J.5. The advantage of these estimates is 
their geographic granularity. At the same time, they are significantly lower than previous 
studies have found.24 In Appendix Section I.3 we show that the results of our counterfactuals 
change little if we use higher values of the elasticity. 

4.2.2. Estimation of the Fréchet Elasticity of Location Choice 

To obtain the value of the Fréchet elasticity 𝜖 , we construct the log-likelihood function that 
combines the number of commuters on each (𝑖, 𝑗) link and the probability of commuting along 
this link:  

 lnℒ ≡ ∑𝑖∈ℐ ∑𝑗∈ℐ 𝑁𝑖𝑗ln [
𝑋̅𝑖𝐸̅𝑗𝑒

−(𝜅+𝜏)𝜖𝑡𝑖𝑗

∑𝑖′∈ℐ ∑𝑗′∈ℐ 𝑋̅𝑖′𝐸̅𝑗′𝑒
−(𝜅+𝜏)𝜖𝑡𝑖′𝑗′

]. (4.1) 

In this expression, 𝑁𝑖𝑗 is the number of commuters from 𝑖 to 𝑗 in the LODES data, 𝑋̅𝑖 and 𝐸̅𝑗 are 

origin and destination fixed effects that subsume all relevant local variables that appear in the 
conditional location choice probability (equation 3.4), and 𝑡𝑖𝑗 is the commuting time from 𝑖 to 

𝑗.25 At this stage, we cannot separately identify 𝜅 + 𝜏 and 𝜖, and we estimate the value of (𝜅 +

 

23 The model locations for which no estimates exist are mostly rural. Since, according to Baum-Snow and 
Han (2021), there is a strong negative relationship between elasticity and population density, we assume that the 
elasticity in these places takes the maximum observed value. 
24 At the level of our model locations, elasticities vary from 0 to 0.95, and the population-weighted mean is 0.45. 
Thus, 𝜂𝑖 ranges from 0.51 to 1 and the mean is 0.72. For comparison, Saiz (2010) estimates the elasticities to be on 
average 1.75 at the metro area level. baum2019microgeography discuss the reasons for this discrepancy. 
Moreover, in our model the parameter 𝜂𝑖 corresponds to the land share in the production. Thus, the mean land 
share in our model is higher than most existing estimates: e.g., Albouy and Ehrlich (2018) find that the land share is 
about 1/3 for the U.S. 
25 Because LODES and CTPP do not distinguish commuters and telecommuters, we estimate this relationship 
assuming that all observations commute to the job site all the time, i.e., are workers with 𝜃 = 1. Moreover, 
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𝜏)𝜖 using Poisson pseudo maximum likelihood (PPML).26 Prior to estimation, we set 𝑁𝑖𝑗 = 0 for 

all pairs with commuting times of more than 3 hours one way.27 As reported in Table 4, our 
estimate of (𝜅 + 𝜏)𝜖 is 0.0443. To recover 𝜖, we use the chosen value 𝜅 + 𝜏 = 0.011, as 
discussed in Section 4.2.1, and obtain 𝜖 = 0.0443/0.011 = 4.026.  

Table 4. Estimation of gravity equation 

𝒕𝒊𝒋 -0.04428 

(0.00013) 

Observations 20,268,004 

Pseudo R2 0.967 

Note: This table reports estimated coefficients for equation (4.1). Standard errors are in parentheses. Estimation 
includes residence and workplace fixed effects. 

4.2.3. Model Calibration and Inversion 

The calibrated values of relative productivity 𝜈𝑚
𝑠 , the elasticity of substitution between on-site 

and remote work 𝜁𝑚
𝑠 , and aversion to remote work 𝜍𝑚

𝑠 , are shown in Table 5. While we jointly 
calibrate these and several other parameters, these three sets of parameters are primarily 
determined by three sets of targets. 

The first set is comprised of the relative wages of remote workers. In our model, we calculate, 
for workers in each industry and education group, the average wage of telecommutable 
workers who work on-site less than 20% of the time, 𝑤̅𝑚

𝑠𝑇(𝜃 < 0.2); and the average wage of 
telecommutable workers who work on-site more than 80% of the time, 𝑤̅𝑚

𝑠𝑇(𝜃 > 0.8). We 
target each ratio 𝑤̅𝑚

𝑒𝑇(𝜃 < 0.8)/𝑤̅𝑚
𝑒𝑇(𝜃 > 0.8) to the corresponding number from Table 2. 

The second set of targets consists of the variance for each group of the choice of on-site work 
frequency for choices which fall between 1 and 4 days per week, i.e., 0.2 ≤ 𝜃 ≤ 0.8. We target 
this middle range so that the moment is more distinct from the average freqency, which is 
heavily influenced by the masses of workers with 𝜃 < 0.2 and 𝜃 > 0.8. These variances are 
calculated from the SIPP data, as described in Section 2. 

 

because we only observe employment levels but not flows by either industry or education, we cannot estimate the 
Fréchet elasticity separately for different worker types. 
26 The primary reason why we use the PPML approach rather than more common OLS estimation is that 98.4% of 
location pairs in our data have zero flows. As Dingel and Tintelnot (2020) show, the sparse nature of commuting 
matrices may result in biased OLS estimates of the Fréchet elasticity and poor model fit.  
27 Out of 139 mln commuters we observe in LODES, 9.8 mln travel between locations that are over 3 hours apart. 
While some of these observations could be full-time telecommuters, due to reasons outlined in Graham, Kutzbach, 
and McKenzie (2014), many of these long commutes arise due to errors in assigning work or residence locations. In 
addition, the evidence in Figure 2 shows that most telecommuters do not live extremely far from their employers 
and therefore are unlikely to be dropped from our analysis. 



 

 22 

The third set of targets is comprised of mean fractions of time worked on-site for workers in 

each industry and education group 𝜃̅𝑚
𝑠 ≡ ∑𝑜 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 𝜃𝑚𝑖𝑗
𝑠𝑜 /∑𝑜 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 . We target each 

ratio to match the type-specific averages calculated from SIPP data. 

Next, we calibrate the elasticity of the distance penalty to the commuting time, 𝜏, as follows. If 
a person is unable to telecommute, it is observationally equivalent for them to live close to 
their work because of the commute cost 𝑑𝑖𝑗 or because of distance penalty 𝑔𝑖𝑗. Once workers 

can telecommute, however, the distinction becomes very important. If commuting cost is all 
that matters, our model predicts that the average telecommuter will live very far from their 
workplace. If, on the other hand, distance penalty is all that matters, there is no substantive 
difference between commuters and telecommuters in terms of residential location choices. 
Either of these extremes would be inconsistent with the stylized fact #4 presented in Section 2 
Thus, we first calculate the average distance in kilometers between residence 𝑖 and job site 𝑗, 
dist𝑖𝑗, separately for “full-time commuters” (defined as those with 𝜃 > 0.9) and telecommuters 

(𝜃 ≤ 0.9). Then, we calibrate 𝜏 so that the ratio of average distances, is the same in the model 
and in the data. 
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Table 5. Internally calibrated parameters 

Parameter Description Value Target 

 Productivity of remote work:  WFH mean wage differentials: 

𝜈𝑆
𝐿 Non-college, non-tradable 0.9734 𝑤̅𝑆

𝐿𝑇(𝜃 < 0.1)

𝑤̅𝑆
𝐿𝑇(𝜃 < 0.9)

= 0.985 

𝜈𝐺
𝐿  Non-college, tradable 1.1351 𝑤̅𝐺

𝐿𝑇(𝜃 < 0.1)

𝑤̅𝐺
𝐿𝑇(𝜃 < 0.9)

= 1.026 

𝜈𝑆
𝐻 College, non-tradable 1.0114 𝑤̅𝑆

𝐻𝑇(𝜃 < 0.1)

𝑤̅𝑆
𝐻𝑇(𝜃 < 0.9)

= 1.024 

𝜈𝐺
𝐻 College, tradable 1.2054 𝑤̅𝐺

𝐻𝑇(𝜃 < 0.1)

𝑤̅𝐺
𝐻𝑇(𝜃 < 0.9)

= 1.052 

 Elasticity of substitution between 
on-site and remote work: 

 Variance of WFH frequency:  

𝜁𝑆
𝐿 Non-college, non-tradable 4.1884 𝑉𝑎𝑟(𝜃𝑆

𝐿|𝜃 ∈ [0.2,0.8]) = 0.0356 

𝜁𝐺
𝐿 Non-college, tradable 3.8924 𝑉𝑎𝑟(𝜃𝐺

𝐿|𝜃 ∈ [0.2,0.8]) = 0.0367 

𝜁𝑆
𝐻 College, non-tradable 4.3548 𝑉𝑎𝑟(𝜃𝑆

𝐻|𝜃 ∈ [0.2,0.8]) = 0.0351 

𝜁𝐺
𝐻 College, tradable 3.0330 𝑉𝑎𝑟(𝜃𝐺

𝐻|𝜃 ∈ [0.2,0.8]) = 0.0273 

 Aversion to work from home:  Average commuting frequency: 

𝜍𝑆
𝐿 Non-college, non-tradable 3.0565 𝜃̅𝑆

𝐿 = 0.97 

𝜍𝐺
𝐿  Non-college, tradable 2.9367 𝜃̅𝐺

𝐿 = 0.94 

𝜍𝑆
𝐻 College, non-tradable 3.1087 𝜃̅𝑆

𝐻 = 0.91 

𝜍𝐺
𝐻 College, tradable 2.9130 𝜃̅𝐺

𝐻 = 0.82 

𝛽 Consumption share of non-tradables 0.6895 Ratio between average wages in the 
tradable and non-tradable sectors = 1.23 

𝜏 Elasticity of distance penalty 𝑔𝑖𝑗.to 

commuting time 

0.0024 Ratio between telecommuters’ and non-
telecommuters’ distance to work = 0.338 

Note: The table lists parameters determined internally during the calibration process 

Spending on non-tradable goods is an important determinant of wages in the non-tradable 
sector. Therefore, we calibrate 𝛽, the expenditure share on non-tradable goods, so that the 
ratio between the mean wages in the tradable and non-tradable sectors, is the same in the 
model and in the data. 

We also need to quantify several vectors of location-specific fundamentals, and we do this by 
inverting the model. These fundamentals are land-adjusted exogenous productivity 𝑎̃𝑚𝑖 ≡

𝑎𝑚𝑖Λ𝑖
−𝜆, land-adjusted exogenous amenities 𝑥̃𝑚𝑖

𝑠 ≡ 𝑥𝑚𝑖
𝑠 Λ𝑖

−𝜒
, land-adjusted productivity of 

floorspace developers 𝜙̃𝑖 ≡ 𝜙𝑖Λ𝑖, residential amenities 𝑋𝑚𝑖
𝑠 , workplace amenities 𝐸𝑚𝑗

𝑠 , and low-

skilled productivity shifter 𝜔𝑚𝑗.28  

 

28 Separate identification of land area Λ𝑖 is not required for the model.  
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These parameters are pinned down by using the following local data. Labor productivity 
parameters 𝑎̃𝑚𝑖 and 𝜔𝑚𝑗 are determined from observed wages by industry and skill. Floorspace 

productivity parameter 𝜙̃𝑖 is determined from observed housing prices. Residential amenities 
𝑥̃𝑚𝑖

𝑠  are determined from total population of a location. In the data we observe total residents 
and employment by industry or education for each location, but not by both characteristics at 
the same time. This requires us to assume that residence and workplace amenities can be 
decomposed into education- and industry-specific components as 𝑋𝑚𝑖

𝑠 = 𝑋𝑚𝑖𝑋𝑖
𝑠 and 𝐸𝑚𝑗

𝑠 =

𝐸𝑚𝑗𝐸𝑗
𝑠. Needless to say, in practice locations differ in many other important ways, e.g., climate, 

access to transportation, etc. All these differences are implicitly captured by the amenity 
parameters. 

The following result states that, given observed data and economy-wide parameters, there are 
unique vectors of location-specific fundamentals, consistent with the equilibrium of the model. 

Proposition 1. Given the data, 𝑁𝑅,𝑚𝑖, 𝑁𝑊,𝑚𝑗, 𝑁𝑅,𝑖
𝑠 , 𝑁𝑊,𝑗

𝑠 , 𝔩𝑠𝑜, 𝑤̂𝑚𝑗
𝑠 , 𝑞𝑖, 𝑝𝑖, 𝑡𝑖𝑗, estimated local land 

shares 𝜂𝑖, and economy-wide parameters, 𝛼, 𝛽, 𝛾, 𝜖, 𝜁, 𝜅, 𝜆, 𝜈𝑚
𝑠 , 𝜍𝑚

𝑠 , 𝜉, 𝜎, 𝜏, 𝜒, and 𝜓, there 

exists a unique set of vectors, 𝑎̃𝑚𝑖, 𝑥̃𝑚𝑖
𝑠 , 𝜙̃𝑖, 𝑋𝑚𝑖, 𝑋𝑖

𝑠, 𝐸𝑚𝑗, 𝐸𝑗
𝑠, and 𝜔𝑚𝑗, that is consistent with 

the data being an equilibrium of the model.  

Proof. See Appendix Section C.2  

4.3. Model Fit 

Stylized facts about telecommuting. How does our model do in matching the four stylized facts 
laid out in Section 2? For stylized fact #1, while we match the fraction of telecommutable 
workers by education and the total number of workers in each industry during our calibration, 
the model endogenously produces the fraction of telecommutable workers by industry. Figure 
1 reported that the share of those who cannot work remotely is 81.1% for non-college workers 
in the non-tradable sector, 71.1% for non-college workers in the tradable sector, 46.7% for 
college workers in the non-tradable sector, and 31.2% for college workers in the tradable 
sector. The corresponding numbers in our model are 77%, 75.9%, 40.4%, and 38.8%. Though 
the ranking is preserved, the industry telecommutability gap is smaller than in the data. This is 
not surprising as industry is a free choice in our model and we do not have any parameters to 
represent the structural links between certain occupations and industries that almost certainly 
drive most of the gap in the data. 

For stylized fact #2, our model successfully produces the gap in telecommuting uptake across 
both education levels and industries. Figure 1 showed that the fraction of those who work from 
home at least one paid full day per week is 3.9% among non-college workers in the non-
tradable sector, 7.8% for non-college workers in the tradable sector, 12.7% for college workers 
in the non-tradable sector, and 26.1% for college workers in the tradable sector. The 
corresponding numbers in our model are 3.6%, 8%, 8.8%, and 28.2%. 

The model ably reproduces stylized fact #3, as demonstrated in Figure 4. By targeting the mean 
frequency for each education-industry pair and the variance for the interior of the distribution, 



 

 25 

𝜃 ∈ [0.2,0.8], we can reproduce the heavy right tail and, to some extent, the bimodality of the 
distribution. One exception is the distribution for college graduates in tradable industries. Due 
to the relatively low calibrated elasticity of substitution between on-site and remote work, our 
model generates a lower number of full-time commuters compared to the data. Stylized facts 
#4 and #5 we match by construction, as the relative wages and relative distance to the job site 
of telecommuters are calibration targets. 

 

Figure 4. Telecommute frequency, data vs. benchmark model 
Note: “Data” reflects averages from SIPP, as described in Section 2. “Model” shows values predicted by the 
calibrated model. A bar at a given 𝜃 includes values 𝜃 ± 0.1. Values of 𝜃 greater than 0.9 are included in the bar at 
𝜃 = 1; values less than 0.1 are included with 𝜃 = 0. 

Commuting flows. We match residents and jobs by education and industry in each location, but 
leave the model free to predict commuting flows between locations. Thus 𝜋𝑖𝑗 ≡
∑𝑠 ∑𝑜 ∑𝑚 𝜋𝑚𝑖𝑗

𝑠𝑜  is an untargeted moment that we can use to evaluate our model.29 Figure J.1 

shows that the correlation between model and data flows is 0.93. 

4.4. Discussion of Calibrated Remote Work Parameters 

The values arrived at for relative productivity parameters, elasticities of substitution between 
remote and on-site work, and parameters for non-pecuniary aversion to remote work, merit 
some discussion. Our calibration sets the relative productivity of remote work higher in the 
tradable than in the non-tradable industry, and higher for college compared to non-college 
workers. This establishes a clear hierarchy, with non-college workers in the non-tradable sector 
being about 2% less productive working full time from home versus full time in the office, and 
college workers in the tradable sector being about 20% more productive working all the time at 

 

29 Flows by industry, occupation, education are unobserved and cannot be compared to model flows. 



 

 26 

home.30 Then, our calibration sets the elasticity of substitution between remote and on-site 
work higher in the non-tradable industry than the tradable industry, with values ranging from 3 
to 4.4.31 

Taken together, these values imply that, compared to workers in the non-tradable industry, 
workers in the tradable industry are relatively more productive at home but their time at home 
and time on-site are less substitutable. The tradable sector includes many knowledge-intensive 
industries such as finance and information technology. One interpretation of the lower 
elasticity of substitution could be that in this sector there is greater complementarity between 
individual tasks that are relatively easy to do at home, and knowledge-sharing and coordination 
which are more efficiently accomplished on-site. 

We also note that the finding of modestly higher overall productivity for remote work in the 
tradable sector is consistent with some empirical evidence. In a carefully controlled experiment, 
Bloom, Liang, Roberts, and Ying (2015) find that Chinese call center workers were 13% more 
productive working from home. This is a result for a narrow category of worker—call center 
operator. A more recent study conducted during the pandemic by Bloom, Han, and Liang (2022) 
randomizes work from home on 1600 engineers in a large multinational company. It finds no 
differences in promotions and performance evaluations, lower quit rates, and less frequent sick 
leaves, suggesting that work from home is at least as productive as work in the office. 
Furthermore, surveys conducted by Barrero, Bloom, and Davis (2021) since March 2020 
indicate that workers of all types self-evaluate that they are, on average, more productive 
working from home. Figure 5 compares these self-reported differences in productivity with our 
calibrated relative productivity of remote work. It shows that, despite some differences in 
levels, the ranking of values across categories for both our calibration and the survey is 
identical. 

As for the aversion to remote work, our calibration yields values of around 3 for each of the 
worker categories. This indicates the presence of significant non-pecuniary barriers to remote 
work for all types of workers.32 

 

30 In contrast, Davis, Ghent, and Gregory (2022) estimate relative productivities of approximately 0.35 for both 
high and low-skilled workers. Combined with their estimated worker-type-specific TFPs, this implies that a high or 
low-skilled remote worker who worked all of the time from home would only earn half of the wage of an 
equivalent non-remote-capable worker. 
31 Davis, Ghent, and Gregory (2022) estimate a single elasticity of substitution which applies to all worker 
categories. They find a value of 3.5, squarely in the middle of the values we find. 
32 While not directly comparable to the parameters in our specification, Davis, Ghent, and Gregory (2022) also 
specify a kind of work from home preference parameter for high and low-skilled workers. Their estimated values 
indicate a positive preference for having the option of working from home. Presumably this is necessary to 
counterbalance their low estimated productivity of remote work. 
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Figure 5. Work from home productivity 
Note: Black squares represent the calibrated relative productivity of work from home, 𝜈𝑀

𝑆 . Gray diamonds 
represent self-reported difference in work-from-home productivity Compared to the on-site productivity from 
Barrero, Bloom, and Davis (2021).  

5. Implications of an increase in Telecommuting  

In this section, we study the long-run impact of the rise in work from home as a result of a 
permanent preference shock which reduces worker distaste for working from home, 𝜍𝑚

𝑠 . We 
explore the shifts in residence, jobs, prices, and commuting patterns predicted by our model, as 
well as welfare implications of these changes. To validate our approach, we show that our 
model has considerable success in predicting local changes in population and real estate prices 
that have already occurred since the beginning of Covid-19 pandemic. Finally, we provide some 
evidence that the preference component of the Covid-19 telework shock is likely more 
significant than the technology shock component. 

5.1. Counterfactual Setup 

Our baseline assumption is that the increase in remote work is driven by falls in the aversion to 
telecommuting experienced by workers of each skill/industry combination: 𝜍𝑚

𝑠  for 𝑠 ∈ {𝐻, 𝐿} 
and 𝑚 ∈ {𝐺, 𝑆}.33 How do we determine the size of the changes in these four parameters? 
Barrero, Bloom, and Davis (2021) conducted repeated surveys of workers where they self-
report their employers’ plans for whether a worker is expected to work remotely zero, one, 
two, three, four or five days a week post-Covid. The survey is representative of the U.S. labor 
force. From these data we calculate a post-pandemic mean on-site working frequency for each 
worker type, and lower the aversion to remote work to match it. We assume that remote 
workers do not contribute to productive externalities: i.e., we set 𝜓 = 0. We examine the 
implications of this assumption in Section 3.3. 

 

33 As discussed in Section 3.6, the equilibrium of the model need not be unique. We follow Tsivanidis 
(2019) in in focusing on the counterfactual equilibrium that is computed using the benchmark equilibrium as the 
starting point and turns out to be unique. Such counterfactual equilibria may be more likely to occur, for instance, 
due to path dependence (Allen and Donaldson, 2020). 
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Figure 6 compares the distributions of commuting frequency indicated by the Barrero, Bloom, 
and Davis (2021) survey with those predicted in the counterfactual. In spite of the fact that only 
one moment—the mean—from each distribution is targeted, the two sets of distributions line 
up very well. 

Table 6 shows the change in the aversion to telecommuting for each worker type that was 
necessary to achieve the targeted increases in telecommuting. Non-college workers in both 
sectors see large drops in their aversion to telecommuting, while college-educated workers see 
smaller drops, ending up with higher levels of aversion than their non-college counterparts. 
One possible interpretation of this result is that even once the technological and cultural 
barriers to remote work are removed, college workers have some reasons to come to the 
office—possibly information sharing and networking—that may be less important for non-
college workers. In Appendix Section I.2, we study a counterfactual in which all types of workers 
experience the same change in work-from-home aversion. This does not change the results in 
any major way. 

 

Figure 6. Telecommute frequency, survey prediction vs. counterfactual model 
Note: Black squares represent the calibrated relative productivity of work from home, 𝜈𝑀

𝑆 . Gray diamonds 
represent self-reported difference in work-from-home productivity Compared to the on-site productivity from 
Barrero, Bloom, and Davis (2021).  
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Table 6. Relative aversion for remote work, baseline vs. counterfactual 

Description Variable Benchmark Counterfactual 

Non-college, non-tradable 𝜍𝑆
𝐿 3.0565 1.1273 

Non-college, tradable 𝜍𝐺
𝐿  2.9367 1.0738 

College, non-tradable 𝜍𝑆
𝐻 3.1087 1.8517 

College, tradable 𝜍𝐺
𝐻 2.9130 1.6963 

Note: The table shows calibrated values of the relative aversion for remote work 

5.2. Results 

Permanently decreasing the aversion for remote work triggers important shifts in the spatial 
distribution of residents, jobs and real estate prices. These add up to a significant effect on 
aggregate productivity and welfare. We will describe the spatial shifts first, and then proceed to 
analyze the aggregate effects. 

5.2.1. Spatial Shifts 

Distribution of residents. As panels (a) and (b) in Figure 7 show, increased productivity of 
remote work leads to a reallocation of residents away from the densest locations and biggest 
cities, towards sparser locations and smaller cities. While there is much heterogeneity in the 
changes which is not explained by the crude ranking of locations and cities, the average trend is 
monotonic. We calculate that about 1/3 of relocations happen within metro areas and 2/3 
across metro areas. This finding, together with the evidence that our model’s predictions match 
observed changes in residents during 2019–2021 both within and across metro areas (see 
Section 5.4), points to the importance of modeling both the system of cities and their internal 
structure when studying the implications of telecommuting. Appendix Section D describes how 
we measure the relocation of residents. 

In the five largest metro areas, New York’s population grows 0.5%, Chicago’s shrinks by slightly 
less than half a percent, and Los Angeles, Dallas and Houston each lose a bit more than 3%. 
Table J.1 provides details for changes in residents in 50 largest metro areas, while Figure J.2 
displays predicted changes on a map. 

Our base of residents is made up of two distinct groups who react very differently to the 
change. Panel (c) shows that non-telecommutable residents shift from less to more dense 
locations, while panel (d) shows that telecommutable residents move away from denser places 
towards the periphery. This is because workers who cannot work remotely take advantage of 
falling prices in city centers and larger cities to relocate closer to better-paying jobs. 
Meanwhile, remote-capable workers, now facing fewer obstacles to working at home, follow 
lower prices out of city centers and from larger to smaller cities. The latter trend is stronger and 
dominates the overall shift in residents—in spite of the fact that telecommutable workers are 
outnumbered nearly 2 to 1. 
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Figure 7. Change in Residents 
Note: Panel (a) shows the relationship between residential density rank for model locations and counterfactual 
change in log residential density. Panel (b) shows the relationship between total resident rank for metro areas and 
the counterfactual change in log total residents. Panel (c) repeats the exercise for non-telecommutable residents 
by model location, while panel (d) does the same for telecommutable residents. Scatterplots in gray show 
individual model locations of MSAs while diamonds or circles represent averages by ventile: i.e., below the 5th 
percentile, from the 5th to the 10th, etc.  

Distribution of jobs. In contrast to the overall pattern for residents, the shift in the overall 
distribution of jobs displays some non-monotonicity. As panel (a) in Figure 8 demonstrates, the 
density of jobs increases on average in locations which are below the median density, while 
decreasing in locations which are above the median, and showing little change in the most-
dense locations. A similar pattern is observed at the metro area level, as shown in panel (b). 
Table J.2 provides details for changes in jobs in 50 largest metro areas, while Figure J.3 displays 
predicted changes on a map. 

Decomposing the changes in job location into the two sectors, we see a differential pattern 
underlying the aggregate shifts. Panel (c) shows that shifts in non-tradable jobs are monotonic, 
from less- to more-dense locations. Since demand for non-tradable output comes entirely from 
the local population, these jobs simply follow the residents. The non-monotonicity in the 
pattern of job shifts comes from the tradable sector. As can be seen in panel (d), locations 
below the median gain tradable jobs, and so do the very densest locations. This is because the 
increased productivity of remote work effectively reduces spatial frictions in the labor market, 
and two types of locations win out in this expanded competition. One is low-density places with 
low real estate costs. The other is the highest-density places, with high productivity, and also 
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the biggest reduction in real estate costs, as we will see in our discussion of price changes 
below.34 

 

Figure 8. Change in Employment 
Note: Panel (a) shows the relationship between residential density rank for model locations and counterfactual 
change in log job density. Panel (b) shows the relationship between total resident rank for metro areas and the 
counterfactual change in log total jobs. Panel (c) repeats the exercise for non-tradable jobs by model location, 
while panel (d) does the same for tradable jobs. Scatterplots in gray show individual model locations of MSAs while 
diamonds or circles represent averages by ventile: i.e., below the 5th percentile, from the 5th to the 10th, etc.  

 

34 The correlation between log productivity in the tradable sector and log residents per square km is 0.66. 
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Figure 9. New York metro area, predicted movements of residents and jobs 
Note: The maps show absolute changes in the number of residents (panel a) or jobs (panel b) per square kilometer 
in the main counterfactual exercise.  

Zooming in: New York metropolitan area. A closer look at the New York metro area gives us a 
more concrete idea of how predicted changes in jobs and residents play out at the intra-city 
level. In panel (a) of Figure 9 we see that there is a large predicted movement of residents out 
of most of Manhattan, Brooklyn, and Queens. The Bronx, Staten Island, and isolated locations 
in Manhattan and Queens see significant inflows. Counties in New Jersey and Connecticut and 
outlying counties in New York state gain residents. This donut-shaped pattern is consistent with 
the nationwide patterns we reviewed earlier as well as with migration evidence during the 
Covid-19 pandemic (Ramani and Bloom, 2021). 

Panel (b) shows changes in jobs. Downtown and midtown Manhattan, the the parts of 
Brooklyn, Queens, the Bronx, and New Jersey which are closest to Manhattan, all see strong job 
gains. Employment growth in highly productive areas like these is largely driven by the growth 
in telecommutable jobs in the tradable sector. The immediate suburbs to the north of the city 
see moderate gains, while Long Island and suburbs to the south of the city see job losses. 

On the aggregate, the residential population of the New York metropolitan area increases by 
0.5% while employment goes up by 1.7% (see Table J.1 and Table J.2). Job gains exceed 
population gains because, with more common remote work, more workers can access the 
attractive New York’s labor market without having to live there. These workers tend to live in 
nearby metro areas where housing is more affordable. For example, Philadelphia’s residential 
population barely changes, declining only 0.1%, even though the number of jobs in the metro 
area falls by 0.8%.35 Further discussion of results for the New York metro area can be found in 
Appendix Section F. 

 

35 Similarly, the Los Angeles metro area experiences a 0.3% job growth while losing 3.5% of its residents. Many of 
these migrants keep their jobs in Los Angeles but commute less often which allows them to settle in the adjacent 
Riverside-San Bernardino area where housing costs are lower. 
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Figure 10. Floorspace prices 
Note: Panel (a) shows the relationship between residential density rank for model locations and counterfactual 
change in floorspace prices. Panel (b) shows the relationship between total resident rank for metro areas and the 
counterfactual change in floorspace prices. Scatterplots in gray show individual model locations of MSAs, while 
diamonds or circles represent averages by ventile: i.e., below the 5th percentile, from the 5th to the 10th, etc.  

Real estate prices. As a result of reallocation of many residents and some jobs to less dense 
locations, changes in floorspace prices show a clear negative slope in initial density, as can be 
seen in Figure 10. Prices increase on average in locations below the top quartile, and decrease 
in most top-quartile locations. Figure J.4 displays predicted rent changes on a map. Both the 
location-level and metro-level patterns are consistent with the previously-seen shift of 
residents and non-tradable jobs to less-dense locations on average driving up demand for 
floorspace. 

5.2.2. Aggregate Results and Welfare Effects 

Table 7 summarizes aggregate results for the main counterfactual scenario, broken down by 
worker type. In what follows, we will discuss each row in turn. 

Income and inequality. Workers’ income rises by 1.6%, averaging larger gains by those who can 
work from home against smaller gains or even losses by those who cannot. A major reason for 
this disparity is that for most workers telework is more productive; therefore, more frequent 
remote work boosts their incomes. We study the implications of this feature in Appendix 
Section I.4 where we eliminate productivity differences between on-site and remote work for 
all types. Among non-telecommutable workers, those without a college degree experience a 
0.6% income growth, while college graduates see a 1.7% decline in income. This happens 
because there are more remote-capable workers among the college-educated and, by 
supplying a greater amount of labor effort due to working from home more often, they 
complement the labor effort of non-college workers but compete with college workers who 
cannot telecommute. 

Averaged together, the incomes of the college-educated increase by more than the incomes of 
their non-college counterparts, which means the overall college wage gap increases (Katz and 
Murphy, 1992). Interestingly, the college gap for remote-capable workers moves in the 
opposite direction than the college gap for those who cannot work from home, the former 
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widening and the latter narrowing. In section 5.3 we compare counterfactuals with alternative 
assumptions, and delve deeper into what drives these disparities. 

A basic measure of inequality across individuals, the variance of log incomes across workers, 
sees no significant change. But inequality across locations, measured as the variance of log 
average resident income across locations, falls from 0.034 to 0.029. Recent research on the 
“Great Divergence” across locations in the U.S. suggests that just a handful of “superstar” cities 
offer great job opportunities and incomes in these areas diverge from the rest of the country 
(Moretti, 2012; Gyourko, Mayer, and Sinai, 2013). Our findings indicate that, as remote work 
becomes more common, job opportunities become more widely available to those who do not 
live in one of the “superstar” cities and, as a result, differences in incomes of residents across 
locations fall. 

Commuting. Due to the reduction in the aversion for remote work, the average worker lives 
52% farther, in terms of commuting time, from their workplace, but spends 20.5% less time 
commuting, because their frequency of work from home has increased by 0.9 days per 5-day 
work week. Workers who cannot work from home, especially college-educated, move closer to 
their workplaces and enjoy somewhat shorter commutes. Those who can work remotely, on 
the other hand, increase their distance to work by around 153% for college or 78% for non-
college, and cut their total commuting time by 48 to 87 percent. 

Commutes across metro areas become more common. In the benchmark economy, 17.7% of 
workers live and work in different metro areas. In the counterfactual economy, this number 
goes up to 23.9% as remote work increases the average distance between residence and 
workplace.36 While our assumption of the CES production function requires positive inputs of 
both on-site and remote work for telecommutable occupations, some workers choose very low 
frequencies of on-site work. In our counterfactual economy, 36% of remote-capable workers 
choose to work on site one day a month or less, while 20% work on site one day a year or less. 
For the latter category, commuting time matters very little and the average distance between 
residence and workplace is between 315 and 400 km depending on worker type. 

Prices. Average floorspace prices drop by 0.8%. This can be attributed to two complementary 
forces. First, the increased desire for remote work increases demand for office space in 
residence locations where prices, on average, are lower than in the dense downtown areas 
where most jobs are. Second, demand for residential floorspace moves to more supply-elastic 
locations which tend to be farther from central areas, and which now face lower effective 
commuting costs. This relocation of demand is counteracted by the overall rise in worker 
income, which puts upward pressure on prices. The average price paid for residential floorspace 
paid by telecommutable workers falls by 1.3% for college-educated and 0.5% for non-college-
educated. Non-telecommutable workers move to denser locations. Even though prices are 
falling on average in these denser locations, they are still more expensive than the peripheral 

 

36 In these calculations we exclude workers who either live or work outside of a metropolitan area. Note that we 
do not match flows in the quantitative model. But the share of cross-MSA jobs in the data is very similar: 16.7%. 
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locations they are moving from, leading to slightly higher average floorspace prices for this 
group. 

Table 7. Aggregate results 

  Non-college College 

 All workers All Non-tel. Tel. All Non-tel. Tel. 

Income, % chg 1.6 0.9 0.6 1.8 2.8 -1.7 5.3 

Average time to work, % chg 52.0 50.7 -0.4 152.6 54.8 -0.7 77.5 

Time spent commuting, % chg -20.5 -18.0 -0.4 -86.6 -27.0 -0.7 -47.6 

Average WFH days/week, chg 0.9 0.8 — 3.5 1.2 — 2.9 

Floorspace prices, % chg -0.8 -0.5 0.6 -4.3 -1.3 0.2 -2.4 

Non-tradables prices, % chg 3.5 3.6 3.6 3.4 3.4 3.5 3.4 

Welfare, % chg        

Consumption only -0.8 -1.5 -2.2 0.2 0.6 -4.2 3.2 

+ commuting 0.8 0.0 -2.0 6.0 2.2 -3.9 5.7 

+ amenities 0.8 0.0 -0.7 2.1 1.9 -1.7 4.0 

Total welfare 7.2 4.0 -1.5 46.9 20.5 -3.4 28.0 

Note: The table shows results of the main counterfactual exercise, as described in the text. “tel.” refers to 
telecommutable workers, and “non-tel.” to non-telecommutable workers. Price changes refer to the change in the 
average price faced by a member of the indicated group of workers. 

Non-tradable prices increase by around 3.5% for everybody. This can be attributed to a 
combination of the increase in income, and a movement of demand to less-dense places which 
tend to also have lower workplace amenities for the non-tradable sector.37 

Workers’ welfare and landowners’ income. Consumption of goods and housing go up for 
telecommuters and down for non-telecommuters, so that consumption for the average worker 
declines slightly, by 0.8%. This is the net result of the 1.8% increase in income and the 0.8% fall 
in floorspace prices, outweighed by the 3.5% increase in the price of non-tradables. Utility loss 
from lower consumption is more than offset by gains from less time spent commuting—when 
adding commute times to changes in utility, the average worker comes out 0.8% ahead. Gains 
from reduced commute times are unevenly distributed, being very large for non-college 
workers in telecommutable occupations, while non-telecommutable workers gain just 0.2 or 
0.3 percentage points.38 Amenities for the average worker do not change. At the same time, 
telecommutable workers actually reduce the quality of their amenities, due to the fact that 

 

37 These are locations where, all else equal, it is harder to attract workers due to lower calibrated employment 
amenities. Hence, non-tradable firms must pay higher wages and pass on that cost to the consumer. 
38 Since our model does not allow for endogenous reduction in traffic due to less frequent commuting, these 
welfare gains may be understated. 
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they move to less dense (and, in our model, lower amenity) locations—effectively trading low 
housing costs, and possibly a better idiosyncratic match, for lower amenities. 

Overall welfare—expected utility prior to the realization of preference shocks—increases by an 
average of 7.2%. This is the net result of large gains for telecommutable workers and small 
changes for the rest.39 One important reason why welfare gains for those who can 
telecommute are so large is that, thanks to less frequent commutes, they are able to choose 
location pairs with higher values of Fréchet shocks, thus satisfying their idiosyncratic 
preferences for locations. Overall, college workers gain more than non-college ones. This is 
because even though telecommutable non-college workers gain the most, their numbers are 
relatively small; while telecommutable workers make up a relatively large proportion of the 
college-educated group. More details on how we compute welfare changes can be found in 
Appendix Section E. 

One more adjustment to consider is the impact of increased telecommuting on the income 
earned by landlords. Overall demand for floorspace goes up by 1.9% and, even though it 
reallocates to places with higher supply elasticity (and, therefore, lower land share), land prices 
still go up by 1%. While we do not take a stance on the weight of landlords in the social welfare 
function, it is obvious that this increase in landowners’ income would contribute to aggregate 
welfare gains from increased remote work. 

5.3. Alternative Scenarios 

We have presented results from the counterfactual in which all endogenous variables adjust 
and remote work does not generate productive externalities (𝜓 = 0). To understand the 
relative roles of each of the channels, we run a series of alternative counterfactuals in which we 
first shut down all of the margins of adjustment, and then re-activate them one by one. 

We start with a world in which the aversion to telecommuting decreases but workers are 
unable to move and floorspace supply does not change. Then we switch on the relocation of 
workers to new residences and jobs. After that, floorspace supply adjusts. Next, we allow 
residential amenities and then local productivity to adjust. This last stage brings us to our 
original counterfactual—the long run with full adjustment. Finally, we let working at home to 
contribute to productive externalities as much as working on site (𝜓 = 1). Appendix Section G 
discusses each scenario in detail. 

As shown in Table G.1, welfare gains emerge as soon as the work from home aversion falls and 
telecommutable workers choose to work remotely more often. Allowing for resident and job 
reallocation does not lead to further average welfare gains but allows those who can work 
remotely to move to less dense locations and enjoy greater housing consumption, at the same 
time as those who cannot work from home move a little closer to their jobs. Allowing 

 

39 Because we do not take a position on whether the calibrated “aversion to telecommuting” parameters, 𝜍𝑚
𝑠 , 

reflect genuine worker preferences or other kinds of non-pecuniary barriers to remote work, we exclude the shift 
in these parameters from all welfare change calculations. 
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developers to respond to changes in residential and commercial floorspace demand leads to 
further welfare gains. When residential amenities are allowed to adjust, the gains become even 
stronger. However, when local productivity adjusts (as in our main counterfactual), welfare 
gains abate because greater amount of telecommuting leads to aggregate productivity losses. 
Finally, when we let remote workers to contribute to productivity externalities as if they were 
on the job site, welfare gains are the largest. 

5.4. Evidence During Covid-19 

The long-run effects of the Covid-19 shock are yet to be seen, but many changes have already 
taken place since early 2020. How do the predictions of our model regarding changes in 
residents and real estate prices compare to the shifts we have already observed?40 

Residents. To test our model’s predictions regarding movement of residents, we use Safegraph 
data on locations of cell phone devices. For each device, Safegraph assigns a “home location” 
based on where this device is observed spending the night over a period of six weeks.41 In 
Appendix Section A.7, we provide more details on the data and show that it is a good proxy for 
residential population at the model location level. Column (1) of Table 8 shows that our 
predicted changes have a positive and significant relationship with observed changes in the 
data. Moreover, this correlation does not merely pick up the negative relationship between 
initial residential density and the change in population.42 As Column (2) shows, even after 
controlling for residential density in 2012–2016 our model predictions retain positive and 
significant correlation with the data. This suggests that structural reasons beyond density, such 
as changes in the commuter market access, can explain migration patterns during the 
pandemic. 

Is our model picking up reallocations within or across local labor markets? To answer this 
question, we first regress observed changes in population on model predictions controlling for 
commuting zone (CZ) fixed effects. Results in columns (3) and (4) demonstrate that our model 
predicts a substantial amount of variation in population changes within CZs, even controlling for 
residential density. Then, we aggregate our model predictions to the level of CZs. Columns (5) 
and (6) show that our model is also successful in predicting changes in population across CZs, 
even when density is taken into account. 

 

40 Changes in residents and real estate prices during the pandemic do not only reflect the shift to work from home. 
They also depend on many other factors absent from our model, e.g., the dislike of density motivated by health 
considerations, expansionary monetary and fiscal policy, etc. 
41 Couture, Dingel, Green, Handbury, and Williams (2021) also used cell phone data to track population changes 
during the Covid-19 pandemic. 
42 Althoff, Eckert, Ganapati, and Walsh (2021) and Haslag and Weagley (2021) previously documented a 
reallocation of residents from the densest to the least dense locations during the pandemic and, as Figure A. 1 
shows, our model also predicts a movement to locations with low density. 
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Table 8. Change in population during Covid-19, model vs. data 

 (1) (2) (3) (4) (5) (6) 

Log chg residents, model 1.378 0.153 1.103 0.298 0.801 0.145 

 (0.0318) (0.0369) (0.0424) (0.0526) (0.0590) (0.0677) 

Log density, data  -0.0711  -0.0537  -0.0477 

  (0.00152)  (0.00231)  (0.00319) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 4502 4502 4453 4453 723 723 

R-squared 0.294 0.526 0.692 0.731 0.204 0.392 

Note: The table shows estimates from the regressions of log change in residents between December 2019 and 
December 2021 from Safegraph data on the log change in residents in the model and log residential density in 
2012-2016. Standard errors are in parentheses. The regressions are estimates at the level of model locations 
(“ML”), with or without CZ fixed effects, or at the level of CZS (“CZ”). Regressions at the model location level with 
CZ fixed effects have fewer observations because some CZs correspond to model locations.  

Real estate prices. To evaluate our predictions of changes in real estate prices, we use Zillow 
data on both residential rents and prices in turn, calculating changes between December 2019 
and December 2021. Table 9 shows the results. Comparing columns (1) and (5) with column (3), 
we can see that while our model does a poor job of predicting changes across CZs, it does a 
good job of predicting changes that happen within CZs. Similarly, comparing columns (2) and (6) 
with column (4), we can see that this same assessment also holds true when controlling for 
initial residential density, meaning that whatever predictive power the model has within CZs 
cannot be reduced to a simple function of “central” versus “peripheral” locations.43 

 

43 The relationship between initial density and the change in rents during the pandemic has been previously 
documented. Gupta, Peeters, Mittal, and Van Nieuwerburgh (2021) and Liu and Su (2021) find a significant 
“flattening” of the relationship between prices/rents and distance to the center in major metro areas for 
residential real estate, while Rosenthal, Strange, and Urrego (2021) report similar relationship for commercial real 
estate. Althoff, Eckert, Ganapati, and Walsh (2021) also show that rents fell in the densest and went up in the least 
dense areas. 
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Table 9. Change in housing rents and prices during Covid-19, model vs. data 

Panel (a): rents 

 (1) (2) (3) (4) (5) (6) 

Log chg rents, model 0.288 -0.213 0.840 1.500 -0.747 0.582 

 (0.252) (0.284) (0.341) (0.458) (2.248) (2.960) 

Log density, data  -0.0197  0.0166  0.0614 

  (0.00527)  (0.00773)  (0.0887) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 1136 1136 1122 1122 98 98 

R-squared 0.00115 0.0133 0.154 0.157 0.00115 0.00617 

Panel (b): prices 

 (1) (2) (3) (4) (5) (6) 

Log chg prices, model 0.131 -0.0295 0.425 0.541 -0.235 -0.0446 

 (0.0820) (0.124) (0.140) (0.212) (0.300) (0.407) 

Log density, data  -0.00504  0.00362  0.00745 

  (0.00294)  (0.00493)  (0.0107) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 4182 4182 4121 4121 688 688 

R-squared 0.000611 0.00132 0.341 0.341 0.000895 0.00160 

Note: The table shows estimates from the regressions of log change in rents (panel a) and prices (panel b) between 
December 2019 and December 2021 from Zillow on the log change in floorspace prices in the model and log 
residential density in 2012-2016. Standard errors are in parentheses. The regressions are estimated at the level of 
model locations (“ML”), with or without CZ fixed effects, or at the level of CZs (“CZ”). Regressions at the model 
location level with CZ fixed effects have fewer observations because some CZs correspond to model locations. 

5.4. Covid-19: A shock to Technology, or Something Else? 

Various authors, including Barrero, Bloom, and Davis (2021), have emphasized the importance 
of shifting norms and preferences in explaining planned changes in work-from-home behavior 
following March 2020. Other non-technological explanations, such as a change in corporate 
policies or a change in the employment bargaining environment, could also possibly be at play. 
At the same time, we believe that there is strong circumstantial evidence for a technology-
shock component to the pandemic. Large investments in remote-complementary capital have 
been made, and a great deal of learning-by-doing has occurred. Davis, Ghent, and Gregory 
(2022) conduct a simulation of the effects of an increase in working from home which is driven 
entirely by improved remote-work productivity. 

We test a productivity-driven change within our own framework and find it to be implausible. 
We do this by running an alternative counterfactual in which planned increases in working from 
home are driven by an increase in productivity, instead of a reduction in telecommuting 
aversion. The results are reported in detail in Appendix section H. The productivity shifts 
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required are quite large, ranging between 70% and 200% for the various worker categories. 
These lead to correspondingly large increases in wages for remote-capable workers. 

In the first place, such a dramatic shift in the average wages of such broad categories of 
workers seems like an unlikely event. It also worsens our model’s ability to predict short-run 
movements of residents across locations and metro areas. Compare the results reported in 
Table H.3 with those in Table 8: the productivity-driven changes are more weakly correlated 
with the actual changes, and when initial density is controlled for, they actually become a 
significant negative predictor. One of the reasons becomes clear when comparing Figures H.1 
and 7: non-telecommutable workers move more strongly away from the periphery to central 
locations, dampening the net pattern of core-periphery reallocation. This is also a consequence 
of gigantic remote worker wage increases—they use their higher incomes to rent more 
floorspace, pricing non-remote workers out of the rural and suburban real estate markets. 

Is it possible that these results depend on the particular data targets we use for relative wages? 
We run an alternative calibration in which average wages for remote workers in each 
education-industry category are 8% lower than their non-remote counterparts, and the 
telecommuting aversion parameters are also lowered so that baseline rates of working from 
home are still matched. This lines up with Mas and Pallais’s (2017) estimate that workers would 
be willing to give up 8% of wages in exchange for the opportunity to work from home. From this 
alternative baseline, the required increases in productivity are just as large as before, while the 
resulting rise in wages of telecommutable workers are 54% for college and 194% for non-
college workers. 

In yet another alternative calibration, we assume that aversion to telecommuting is zero for all 
groups, and match baseline rates of telecommuting entirely by adjusting the relative 
productivity of remote work. This yields parameters which imply that full-time remote workers 
should earn on average only 1/3rd the wage of a similar, full-time office-based worker—in 
other words, that full-time remote workers should earns wages as if they were living in a third-
world country. From this baseline, large increases in remote productivity do not lead to large 
increases in remote wages. But this specification is completely contradicted by the data—there 
are full-time remote workers pre-2020, and after controlling for all observables, they earn 
about the same as their office-bound counterparts, as shown in Table 2 This last specification, 
severely low-balling remote work’s initial productivity, corresponds with the approach taken by 
Davis, Ghent, and Gregory (2022). The inconsistency with the initial distribution of wages is not 
immediately apparent in their framework because it is not capable of generating the full range 
of observed work-from-home frequencies, so there are actually no full-time remote workers in 
their model. 

We are thus not able to find a configuration in which increased remote work is driven solely by 
productivity changes which also gives plausible results.44 At the same time, a shift produced 

 

44 This result does not depend, for example, on whether or not the change in relative productivity is modeled as 
being amplified by externalities, as in Davis, Ghent, and Gregory (2022). As discussed in the previous paragraph, 
the only way to have a productivity change account for 100% of the change in remote work behavior without 
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entirely by declines in the aversion to telecommuting, representing some combination of 
worker tastes and social and legal norms, produces reasonable predictions.45 Therefore, while 
we believe that both remote productivity and these other forces have changed due to the 
Covid-19 shock, it appears that the latter changes are more important in driving behavior. 

6. Conclusions 

In this paper we have sought to better understand a phenomenon which could reshape our 
work lives and our cities: telecommuting. We build a quantitative spatial equilibrium model of 
commuting and remote work crafted to conform with key empirical facts of pre-2020 telework, 
and with the spatial flexibility to investigate the potential for long-run changes in the 
distribution of jobs and residents. We calibrate the relative productivity and the elasticity of 
substitution of remote work for on-site work separately for workers of two education levels and 
two production sectors. 

We propose that enforced 2020 workplace distancing was primarily a durable shock to 
attitudes and policies surrounding remote work, which can be represented in a reduced form 
way as a shock to workers’ preferences. We calibrate a counterfactual where surveys of 
workers’ long-run remote work plans come true. Counterfactual predictions for local changes in 
residents and real estate prices line up well with actual changes observed 2019–2021. Our 
model foresees decentralization of workers who can work from home, partially 
counterbalanced by a weaker centralization of those who cannot; a decentralization of non-
tradable employment, partially offset by an increase in tradable employment in the densest, 
most productive places; and a slight reduction in average real estate prices. Those who can 
work from home benefit greatly, while those who cannot experience welfare losses, especially 
when remote workers do not contribute to workplace agglomeration externalities. 

Furthermore, we provide evidence that a shock to remote work productivity is not plausible as 
a sole explanation of a durable move towards remote work, and that changes in tastes, norms 
and institutional polices are likely more important. Loading the entire change onto remote work 
productivity leads to implausibly large increases in remote worker wages, which drive predicted 
population movements that are inconsistent with observed movements as of December 2021. 
We believe that this has implications for how the long-term component of the 2020 remote 
work shock ought to be represented in quantitative models. 

To sum up, the impact of remote work may be large, but is unlikely to be catastrophic. There 
will be no “end to big cities.” The average big metro area loses about 2.5% of its population, but 
the very biggest, New York, actually grows by 0.5%. Many of the largest, most productive cities 
will be able to take advantage of geographically expanded competition to lure additional talent 

 

implausible wage predictions is for the initial productivity of remote work to be extremely low, in a way that 
cannot be made consistent with data on the distribution of wages across remote work frequencies. 
45 We do not intend to strongly endorse any particular interpretation of the forces represented by “aversion.” 
“Aversion,” could also, for example, be interpreted as institutional ignorance about the relatively high productivity 
of remote work, which was remedied by the experience of Covid-19. 
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from other cities, and call in remote workers from more distant suburbs. This same 
phenomenon should also reduce income inequality across residential locations. 

Finally, we believe the substantial impacts of increased telecommuting, both observed and 
potential, suggest this will be an important consideration for quantitative spatial models in the 
future. 
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Appendix  

A. Data 

This appendix section describes the data. The data can be accessed at 
https://doi.org/10.7910/DVN/IJSQEY, and should be cited as follows: 

Parkhomenko, Andrii, 2022, "Data for: Spatial Implications of Telecommuting in the United 
States", https://doi.org/10.7910/DVN/IJSQEY, Harvard Dataverse, V1, 
UNF:6:xSQvklXUQ5I198Il6kAltA== [fileUNF] 

A.1. Telecommuting Frequencies 

To study the frequency of working from home for individuals in various industries and 
education levels, we use the data from the 2018 Survey of Income and Program Participation 
(SIPP). The survey asks how many full paid work days a survey respondent worked in a 
reference week. We focus our analysis on full-time workers 16 years or older who are not self-
employed. Our estimates are based on a final sample of 261,757 observations. 

A.2. Work-from-Home Wage Premia 

We estimate differences between the wages of telecommuters and non-telecommuters from 
the 2012–2016 ACS. We identify those who work from home full time as individuals who 
responded to the question about means of transportation to work as “worked at home.” For 
workers with telecommutable occupations only, for each industry/education category 
separately, we regress log hourly wages on a dummy variable for working from home full time, 
controlling for age, sex, race, industry, occupation, and PUMA of residence. Our sample 
includes a total of 4.7 million observations. 

A.3. Local Wages Indices 

Our sources of wage data is the Census Transportation Planning Products (CTPP), aggregated at 
the Census tract level, and microdata from the American Community Survey (ACS). We use the 
data reported for the period from 2012 to 2016. We use the variable “earnings in the past 12 
months (2016 $), for the workers 16-year-old and over,” which is based on the respondents’ 
workplace locations. The variable provides the estimates of the number of people in each of the 
several earning bins in each workplace tract.46 

We calculate mean labor earnings for tract 𝑘 as 𝑤̅𝑘 = (∑𝑏 𝑁𝑏,𝑘𝑤̅𝑏)/∑𝑏 𝑁𝑏,𝑘, where 𝑁𝑏,𝑘 is the 

number of workers in bin 𝑏 in tract 𝑘, and 𝑤̅𝑏 is mean earnings in bin 𝑏 for each PUMA, 

 

46 The bins are ≤ $9,999; $10,000–$14,999; $15,000–$24,999; $25,000–$34,999; $35,000–$49,999; $50,000–
$64,999; $65,000–$74,999; $75,000–$99,999; and ≥ $100,000. 

https://doi.org/10.7910/DVN/IJSQEY
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calculated from the ACS microdata. Next, to control for possible effects of workers’ 
heterogeneity on tract-level averages, we estimate  

𝑤̅𝑘 = 𝛼 + 𝛽1𝑎𝑔𝑒𝑘 + 𝛽2𝑠𝑒𝑥𝑟𝑎𝑡𝑖𝑜𝑘 + ∑𝑟 𝛽2,𝑟𝑟𝑎𝑐𝑒𝑟,𝑘 + ∑𝑑 𝛽3,𝑑𝑖𝑛𝑑𝑑,𝑘 + ∑𝑜 𝛽4,𝑜𝑜𝑐𝑐𝑜,𝑘 + 𝜖𝑘,
 (A.1) 

where 𝑎𝑔𝑒𝑘 is the average age of workers; 𝑠𝑒𝑥𝑟𝑎𝑡𝑖𝑜𝑘 is the proportion of males to females in 
the labor force; 𝑟𝑎𝑐𝑒𝑟,𝑗 is the share of race 𝑟 ∈ {𝐴𝑠𝑖𝑎𝑛, 𝐵𝑙𝑎𝑐𝑘, 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐,𝑊ℎ𝑖𝑡𝑒}; 𝑖𝑛𝑑𝑑,𝑘 is the 

share of jobs in industry 𝑑; and 𝑜𝑐𝑐𝑜,𝑘 is share of jobs in occupation 𝑜 in tract 𝑘.47 The 

estimated tract-level wage index is the sum of the estimated constant and the tract fixed effect: 

𝑤̂𝑘
0 ≡ 𝛼̂ + 𝜖𝑘̂. We then construct wage indices for each location 𝑗, 𝑤̂𝑗

0, as the employment-

weighted average of the values of 𝑤̂𝑘
0 for each tract 𝑘 that pertains to model location 𝑗. 

Then, using microdata from the American Community Survey (ACS), we calculate average wage 
premia for college over non-college workers, and tradable industry over non-tradable industry 
workers, separately at the place-of work public-use microdata area (POWPUMA) level, and 
assume that they are uniform across all model locations belonging to a single POWPUMA.48 Let 

the college wage premium for model location 𝑗 be designated 𝜙𝑗
𝐻, and for the sake of concision 

of presentation let us also define a non-college wage “premium” 𝜙𝑗
𝐿 = 1 that is normalized to 

1. Let the tradable industry premium for model location 𝑗 be defined as 𝜌𝑗
𝐺, while the non-

tradable premium 𝜌𝑗
𝑆 = 1 is normalized to 1. 

For each location 𝑗, we need the two sets of conditions to hold. First, the relationships between 
the wages paid to different education and industry categories implied by the “premia” we have 

just defined: 𝑤̂𝑚𝑗
𝑠 /𝑤̂𝑚′𝑗

𝑠′ = (𝜙𝑗
𝑠𝜌𝑗

𝑚)/(𝜙𝑗
𝑠′𝜌𝑗

𝑚′) for 𝑠, 𝑠′ ∈ {𝐻, 𝐿} and 𝑚,𝑚′ ∈ {𝐺, 𝑆}. Second, we 

need the average wage to match the one derived from the data, given the relative prevalence 

of each type of worker: ∑𝑠 ∑𝑚 𝑤̂𝑚𝑗
𝑠 𝜋𝑚𝑗

𝑠 = 𝑤̂𝑗
0, where conditional choice probabilities 𝜋𝑚𝑗

𝑠 ≡

∑𝑖 ∑𝑜 𝜋𝑚𝑖𝑗
𝑠𝑜 , reflecting the total number of workers of each education level and industry with 

jobs in 𝑗, from all residence locations and occupations, are constructed as follows: we observe 
𝜋𝑚𝑗 ≡ ∑𝑠 ∑𝑖 ∑𝑜 𝜋𝑚𝑖𝑗

𝑠𝑜  for each location, and observe 𝜋𝑚0
𝑠 ≡ ∑𝑖 ∑𝑗 ∑𝑜 𝜋𝑚𝑖𝑗

𝑠𝑜  at the economy-

wide level, and assume that the educational composition of industry does not vary by location: 
𝜋𝑚𝑗

𝑠 = 𝜋𝑚𝑗𝜋𝑚0
𝑠 . 

 

47 We use the following industry categories: Agricultural; Armed force; Art, entertainment, recreation, 
accommodation; Construction; Education, health, and social services; Finance, insurance, real estate; Information; 
Manufacturing; Other services; Professional scientific management; Public administration, Retail. We use the 
following occupation categories: Architecture and engineering; Armed Forces; Arts, design, entertainment, sports, 
and media; Building and grounds cleaning and maintenance; Business and financial operations specialists; 
Community and social service; Computer and mathematical; Construction and extraction; Education, training, and 
library; Farmers and farm managers; Farming, fishing, and forestry; Food preparation and serving related; 
Healthcare practitioners and technicians; Healthcare support; Installation, maintenance, and repair; Legal; Life, 
physical, and social science; Management; Office and administrative support; Personal care and service; 
Production; Protective service; Sales and related. 
48 POWPUMAs are larger than PUMAs and even in dense urban areas often correspond to counties. 
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Manipulating these two sets of conditions, we can calculate 𝑤̂𝑚𝑗
𝑠  in the following way. First, the 

average wage for college-educated tradable workers, as a function of 𝑤̂𝑗
0:  

 𝑤̂𝐺𝑗
𝐻 =

𝑤̂𝑗
0

∑𝑠 ∑𝑚

𝜙𝑗
𝑠𝜌𝑗

𝑚

𝜙𝑗
𝐻𝜌𝑗

𝐺
∑𝑖 ∑𝑜 𝜋𝑚𝑖𝑗

𝑠𝑜
. (A.2) 

Then, wages for each category 𝑠 ∈ {𝐻, 𝐿} and 𝑚 ∈ {𝐺, 𝑆} are given by 𝑤̂𝑚𝑗
𝑠 =

𝜙𝑗
𝑠𝜌𝑗

𝑚

𝜙𝑗
𝐻𝜌𝑗

𝐺 𝑤̂𝐺𝑗
𝐻 . These 

are then translated into wages in the model 𝑤𝑚𝑗
𝑠 , according to the following equation:  

 𝑤𝑚𝑗
𝑠 =

(𝑤̂𝑚𝑗
𝑠 )

𝛼

𝛼𝛼(1−𝛼)1−𝛼 (
∑𝑖 ∑𝑜𝜋𝑚𝑖𝑗

𝑠𝑜

∑𝑖 ∑𝑜𝜋𝑚𝑖𝑗
𝑠𝑜 Ω𝑚𝑖𝑗

𝑠𝑜 )
𝛼

. (A.3) 

A.4. Telecommuters’ Distance to Job Sites 

To study the relationship between the propensity to work at home and the distance between 
home and job site, we use data from the 2017 National Household Transportation Survey 
(NHTS). We focus on full time workers in the 48 contiguous United States and Washington, D.C. 
Bins for each commuting frequency are constructed as follows: 5 days per week telecommuters 
reported working from home more than 90% of the days in a 21.67-day average work month; 4 
days—between 90% and 70%, 3 days—between 70% and 50%, etc. The sample comprises 
83,512 observations. The distance between home and job site is great circle distance as 
reported in the database. Those who reported working from home over 22 days a month are 
excluded. 

A.5. Local Rent Indices 

We measure local rents by constructing hedonic rent indices at the level of PUMAs as in 
Eeckhout, Pinheiro, and Schmidheiny (2014). In cases when a PUMA contains more than one 
model location we assign the same index to all. We use the 2016 5-year ACS sample tabulated 
by the IPUMS (ACS, 2016)49 To construct local rent indices, we use self-reported rents and 
estimate the following regression,  

 ln𝑞𝜄,𝑖𝑡 = 𝛽0 + 𝜷1𝒳𝜄,𝑖𝑡 + 𝜑𝑖 + 𝜑𝑡 + 𝜀𝜄,𝑖𝑡 , (A.4) 

where 𝑞𝜄,𝑖𝑡 is the rent reported by household 𝜄 in PUMA 𝑖 and year 𝑡, while 𝒳𝜄,𝑖𝑡 is a vector of 

controls that includes the number of rooms in the dwelling, the number of units in the structure 
(e.g., single-family detached, 2-family building), and the year of construction. Parameters 𝜑𝑖 
and 𝜑𝑡 are PUMA and year fixed effects, respectively, and 𝜀𝜄,𝑖𝑡 is the error term. The rent index, 
𝑄𝑖, represents the rent after controlling for the observable characteristics listed before and 
idiosyncratic effects, and is given by 𝑄𝑖 ≡ exp(𝛽0 + 𝜑𝑖). 

 

49 We keep only household heads to ensure that the analysis is at the level of a residential unit. We exclude 
observations who live in group quarters; live in farm houses, mobile homes, trailers, boats, tents, etc.; are younger 
than 18 years old; and live in a dwelling that has no information on the year of construction. 
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A.6. Estimation of Travel Times 

We follow the practice recommended by Spear (2011) and use LODES data as a measure of 
commuting flows and Census Transportation Planning Products (CTPP) data to provide 
information on commute times. The CTPP database reports commuting time data for origin-
destination pairs of Census tracts across the contiguous United States for 2012–2016, and is 
tabulated using American Community Survey (ACS) data.50 Travel times are reported for a little 
over 4 million trajectories, a small fraction of all possible bilateral trajectories, because most 
pairs of tracts are far enough apart that the ACS survey does not observe anyone commuting 
between them. We process this data in the following steps. 

First, we calculate average travel time between each pair of locations as the average of all tract-
to-tract times with an origin inside one location and a destination in the other. We throw out 
the calculation for any pair for which less than 10% of all possible tract-to-tract times is 
reported by CTPP. We also exclude times that imply a speed of more than 100 km/hour or less 
than 5 km/hour. We perform this same calculation for average distance of each location from 
itself, obtaining data-based estimates of internal travel time for each location. 

Second, to prevent “breaks” in the network, we check to see if any location does not have an 
estimated travel time to its 5 nearest neighbors. If any are missing, we project a one using 
estimated coefficients of a regression of average location-to-location travel times on average 
great circle distance and an indicator of origin = destination. This procedure adds ≈10,000 
additional links, out of 20,268,004 possible location-to-location trajectories. 

Finally, we take the ≈34,000 primitive connections, the travel times for which we have 
calculated as detailed above, as the first-order connections in a transport network. We use 
Dijkstra’s algorithm to find the least possible travel times through this network between each 
pair of model locations. 

A.7. Safegraph Location Data 

Safegraph tracks and collects information from approximately 20 million of mobile devices in 
the US, and uses this information to construct geographical location data. Home locations are 
determined based on where mobile devices are detected at nighttime. To obtain an estimate of 
the change in the residence patterns between 2019 and 2021, we take the number of devices 
resident in each Census block group in both December 2019 and December 2021. We aggregate 
these counts up to the level of model locations, and calculate the share of devices in each 
location. Finally we calculate the log of the difference in these shares for each location over 
time. 

How accurate is the Safegraph data as a proxy of local population? Couture, Dingel, Green, 
Handbury, and Williams (2021) show that cell phone data provides reliable estimates of local 

 

50 The CTPP data divides commuting times into 10 bins: less than 5 minutes, 5 to 14 minutes, 15 to 19 minutes, 20 
to 29 minutes, 30 to 44 minutes, 45 to 59 minutes, 60 to 74 minutes, 75 to 89 minutes, 90 or more minutes, and 
work from home. 
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population levels at the county level. To assess the validity of Safegraph data at the level of our 
model locations which are typically smaller than counties, we compute population estimates 
for each location using Census estimates at the tract level for the year 2019. Similarly, for each 
location we compute the number of mobile devices. Figure A. 1 shows that the correlation 
between Safegraph and Census population estimates is nearly one. At the same time, the 
regression coefficient of slightly lower than one suggests that Safegraph somewhat 
oversamples locations with larger population. 

 

Figure A. 1. Comparison of Census and Safegraph population counts 

Note: The figure shows the relationship between population estimates for each model location based on the 
Census data and the number of mobile devices in each location from the Safegraph data in 2019. 

B. Existence and Uniqueness of an Equilibrium 

Consider a simplified version of our model with fixed floorspace supply, single industry, no 
heterogeneity in education, and no externalities in residential amenities. Also, let all workers 
have an occupation that allows telecommuting. Without telework, this model corresponds to a 
version of Ahlfeldt, Redding, Sturm, and Wolf (2015) for which Allen, Arkolakis, and Li (2020) 
derive sufficient conditions for existence and uniqueness. 

The simplified model’s equilibrium can be written as a system of 𝐼 × 3 equations in floorspace 
prices, supply of on-site work days, and productivity as  

 𝑞𝑖
1+𝛾𝜖

= ∑𝑗∈ℐ
𝛾

𝐻̅𝑅𝑖
Φ−1/𝜖𝐵𝑖𝑗

𝜖 ℚ̃𝑖𝑗
−𝜖ℚ

𝑖𝑗

1+𝜖(1+𝛼(𝜁−1))

𝛼(𝜁−1)
𝛼̅1+𝜖𝐴

𝑗

1+𝜖

𝛼 , (B.1) 

 𝑁𝑊𝐶𝑖 = ∑𝑗∈ℐ 𝑞𝑖
−(1−𝛼)(𝜁−1)

𝑞𝑗
−𝛾𝜖

Φ−1/𝜖𝐵𝑗𝑖
𝜖 ℚ̃𝑗𝑖

−𝜖ℚ
𝑗𝑖

𝜖+𝛼(𝜖−1)(𝜁−1)

𝛼(𝜁−1)
𝛼̅𝜖𝐴

𝑖

𝜖

𝛼, (B.2) 
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 𝐴𝑖 = 𝑎𝑖 (
𝑁𝑊𝐶𝑖

Λ𝑖
)

𝜆
, (B.3) 

where 𝐻̅𝑅𝑖 is the exogenous supply of residential floorspace and Φ1/𝜖 is expected utility. Let 

ℚ𝑖𝑗
1 ≡ 𝑞𝑗

−(1−𝛼)(𝜁−1)
, ℚ̃𝑖𝑗

1 ≡ ℚ𝑖𝑗
1 𝑒𝜅𝑡𝑖𝑗, and ℚ𝑖𝑗

2 = 𝜈𝜁−1𝑞𝑖
−(1−𝛼)(𝜁−1)

𝑒𝜅𝑡𝑖𝑗(1+𝛼(𝜁−1)), as well as ℚ𝑖𝑗 ≡

ℚ𝑖𝑗
1 + ℚ𝑖𝑗

2  and ℚ̃𝑖𝑗 ≡ ℚ̃𝑖𝑗
1 + ℚ𝑖𝑗

2 . 

Note that the system (1)–(3) has the form of system (1) in Allen, Arkolakis, and Li (2020) and 

can be written as 𝒳𝑖ℎ = ∑𝑗∈ℐ ℱ𝑖𝑗ℎ(𝒳𝑗1, . . . , 𝒳𝑗𝐻), where ℎ refers to an interaction of a 

particular type. In our case, there are 3 interactions with 𝒳𝑗1 = 𝑞𝑗, 𝒳𝑗2 = 𝑁𝑊𝐶𝑗, and 𝒳𝑗3 = 𝐴𝑗. 

Let ℰ𝑖𝑗(𝒳ℎ𝒳ℎ′) ≡ 𝜕lnℱ𝑖𝑗ℎ/𝜕ln𝒳𝑗ℎ′. Using results from Allen, 

Arkolakis, and Li (2020), we can study existence and uniqueness by studying the properties of 

the 3 × 3 matrix where each component is given by max𝑖,𝑗{|ℰ𝑖𝑗(𝒳ℎ𝒳ℎ′)|}. 

Because effective effort and commuting costs include additive terms, two out of nine cross-
elasticities that form the above-mentioned matrix are location-specific:  

 ℰ𝑖𝑗(𝑞, 𝑞) =
1−𝛼

1+𝛾𝜖
[𝜖(𝜁 − 1)

ℚ̃𝑖𝑗
1

ℚ̃𝑖𝑗
−

1+𝜖(1+𝛼(𝜁−1))

𝛼

ℚ𝑖𝑗
1

ℚ𝑖𝑗
], (B.4) 

 ℰ𝑖𝑗(𝑁𝑊𝐶 , 𝑞) = {

1−𝛼

1+𝛾𝜖
[𝜖(𝜁 − 1)

ℚ𝑗𝑖
2

ℚ̃𝑗𝑖
−

𝜖+𝛼(𝜖−1)(𝜁−1)

𝛼

ℚ𝑗𝑖
2

ℚ𝑗𝑖
] −

𝛾𝜖

1+𝛾𝜖
if𝑗 ≠ 𝑖,

1−𝛼

1+𝛾𝜖
[𝜖(𝜁 − 1)

ℚ̃𝑗𝑖
1

ℚ̃𝑗𝑖
−

𝜖+𝛼(𝜖−1)(𝜁−1)

𝛼

ℚ𝑗𝑖
1

ℚ𝑗𝑖
] −

𝛾𝜖+(1−𝛼)(𝜁−1)

1+𝛾𝜖
if𝑗 = 𝑖.

 (B.5) 

That is, existence and uniqueness may depend on location-specific outcomes; however, we can 

check the domain of {ℚ̃𝑖𝑗
1 /ℚ̃𝑖𝑗 , ℚ𝑖𝑗

1 /ℚ𝑖𝑗 , ℚ𝑗𝑖
2 /ℚ̃𝑗𝑖, ℚ𝑗𝑖

2 /ℚ𝑗𝑖} to obtain maximum absolute values 

of (4) and (5), given values of 𝛼, 𝛾, 𝜖, 𝜁, 𝜆, 𝜅, and 𝜈 from our calibrated model (see Tables 3 and 
5).51 We do so by noticing that 𝑡𝑖𝑗 ∈ [0,∞) and 𝑞𝑖 ∈ (0,∞). Thus, the matrix of cross-elasticites 

max𝑖,𝑗{|ℰ𝑖𝑗(𝒳ℎ𝒳ℎ′)|} for ℎ ∈ {𝑞, 𝑁𝑊𝐶 , 𝐴} is  

 𝒜 ≡

[
 
 
 

1−𝛼

1+𝛾𝜖

1

1+𝜈𝜁−1 [
1+𝜖(1+𝛼(𝜁−1))

𝛼
− 𝜖(𝜁 − 1)] 0

1+𝜖

𝛼

1−𝛼

1+𝛾𝜖

1

1+𝜈𝜁−1 [
𝜖+𝛼(𝜖−1)(𝜁−1)

𝛼
− 𝜖(𝜁 − 1)] +

𝛾𝜖+(1−𝛼)(𝜁−1)

1+𝛾𝜖
0

𝜖

𝛼

0 𝜆 0 ]
 
 
 

 (B.6) 

Existence and uniqueness. According to Theorem 1 in Allen, Arkolakis, and Li (2020), if 𝒜 has a 
spectral radius less than 1, then the equilibrium exists and is unique. For the parameter values 
in our calibrated model, the spectral radius of 𝒜 is 1.0084, marginally greater than 1. That is, in 
the simplified version of our model the equilibrium is not guaranteed to exist and, if it does, 
multiple equilibria exist. 

 

51 Our calibrated model has multiple values of 𝜈 and 𝜁 depending on education and industry. We use weighted-
average values of each parameter. 
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How does this finding compare to the result of Allen, Arkolakis, and Li (2020) for a model 
without telework? They find that, as long as the productive externality is weak enough, 𝜆 <

min {1 − 𝛼,
𝛼

1+𝜖
}, the equilibrium is unique. In our model, 𝜆 = 0.086 and min {1 − 𝛼,

𝛼

1+𝜖
} =

0.162. That is, if our simplified model did not have work from home, the externality would be 
weak enough to yield uniqueness. 

Why does the introduction of the ability to substitute on-site and remote work result in 
multiple equilibria? In a standard model, the extent to which a location with high exogenous 
productivity attracts workers is amplified via agglomeration externalities but, in turn, is 
dampened as the number of workers willing to commute there daily is limited. Work from 
home expands the firm market access (or “catchment area”) in such locations so they can 
attract more workers because they do not have to commute daily. As a result, even modest 
values of 𝜆 can lead to multiple equilibria. 

To confirm this reasoning, we found that when 𝜆 < 0.084, the spectral radius of 𝒜 is less than 
1. We also shut down the ability to telecommute by setting 𝜁 = 0 and 𝜈 = 0. In this case, even 
with 𝜆 = 0.086, the spectral radius is 0.82, and there exists a unique equilibrium. Since we 
assumed that in this version of the model all workers can telecommute, even though in the 
data only 34% of workers can work remotely, the latter result is highly relevant and, all else 
equal, makes the uniqueness of an equilibrium in our quantitative model a likely outcome. 

C. Model Inversion and Calibration 

C.1. Inversion and Calibration Algorithm 

In order to obtain the values of location-specific fundamentals 𝑎̃𝑚𝑖 ≡ 𝑎𝑚𝑖Λ𝑖
−𝜆, 𝑥̃𝑚𝑖

𝑠 ≡ 𝑥𝑚𝑖
𝑠 Λ𝑖

−𝜒
, 

𝜙̃𝑖 ≡ 𝜙𝑖Λ𝑖, 𝑋𝑚𝑖, 𝑋𝑖
𝑠, 𝐸𝑚𝑗, 𝐸𝑗

𝑠, and 𝜔𝑚𝑗, as well as economy-wide parameters 𝜈𝑚
𝑠 , 𝜍𝑚

𝑠 , 𝜁𝑚
𝑠 , 𝜏, and 

𝛽, we invert the model using the following sequence of steps. 

1. Guess the values of 𝑋𝑚𝑖, 𝑋𝑖
𝑠, 𝐸𝑚𝑗, 𝐸𝑗

𝑠, 𝜈𝑚
𝑠 , 𝜍𝑚

𝑠 , 𝜁𝑚
𝑠 , 𝜏, and 𝛽. 

2. Perform the following sequence: 

(a) Solve for industry and location choice probabilities, 𝜋𝑚𝑖𝑗
𝑠𝑜 , using equation (3.3) and 

compute residential population and employment by education and industry as follows: 
𝑁𝑅𝑚𝑖 = ∑𝑠 ∑𝑜 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 , 𝑁𝑅𝑖
𝑠 = ∑𝑜 ∑𝑚 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 , 𝑁𝑊𝑚𝑗 = ∑𝑠 ∑𝑜 ∑𝑖 𝜋𝑚𝑖𝑗
𝑠𝑜 , and 𝑁𝑊𝑗

𝑠 =

∑𝑜 ∑𝑚 ∑𝑖 𝜋𝑚𝑖𝑗
𝑠𝑜 . 

(b) Solve for optimal commuting frequency, 𝜃𝑚𝑖𝑗
𝑠𝑜 , using equation (3.13) and find the 

average for each (𝑚, 𝑠) type: 𝜃̅𝑚
𝑠 ≡ (∑𝑜 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 𝜃𝑚𝑖𝑗
𝑠𝑜 )/(∑𝑜 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 ). 

(c) Compute the variance of commuting frequencies for each (𝑚, 𝑠) for the interval 𝜃 ∈
[0.2,0.8]: Var(𝜃𝑠

𝑚|𝜃 ∈ [0.2,0.8]). 
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(d) Compute the average distance between residence and job site for “commuters” (𝜃 >
0.9) and “telecommuters” (𝜃 ≤ 0.9), and then calculate the ratio of the two numbers.  

(e) Solve for optimal effort Ω𝑚𝑖𝑗
𝑠𝑜  and commuting costs, as a function of optimal 

commuting frequency, 𝑑𝑚𝑖𝑗
𝑠𝑜 , using equations (3.11) and (3.12), respectively. 

(f) Solve for wages and disposable income: (i) convert wages observed in the tradable 
sector in the data to the measure of wages used in the model using equation (A.3); (ii) 
find disposable income using equation (3.12). 52 

(g) Combine equations (3.16) and (3.19) to find 𝜔𝑚𝑗:  

 𝜔𝑚𝑗 = [1 + (
𝑤𝑚𝑗

𝐻

𝑤𝑚𝑗
𝐿 )

1+𝛼(𝜉−1)

𝛼𝜉

(
∑𝑜 ∑𝑖 𝜋𝑚𝑖𝑗

𝐿𝑜 Ω𝑚𝑖𝑗
𝐿𝑜

∑𝑜 ∑𝑖 𝜋𝑚𝑖𝑗
𝐻𝑜 Ω𝑚𝑖𝑗

𝐻𝑜 )

1

𝜉

]

−1

 (C.1) 

(h) Solve for labor productivity in the non-tradable sector using the data on prices of 
non-tradables and equation (3.22). 

(i) Compute the ratio between mean wages in tradable/non-tradable sectors.  

(j) Compute for each industry/education pair the ratio between mean wages for 
telecommutable workers with 𝜃 > 0.8, and those with 𝜃 < 0.2. 

(k) Update 𝑋̅𝑚𝑖, 𝑋̅𝑖
𝑠, 𝐸̅𝑚𝑗, 𝐸̅𝑗

𝑠: increase 𝑋̅𝑚𝑖 if the value of 𝑁𝑅𝑚𝑖 in the model is lower 

than in the data, reduce it otherwise; increase 𝑋̅𝑖
𝑠 if the value of 𝑁𝑅𝑖

𝑠  in the model is 
lower than in the data, reduce it otherwise; increase 𝐸̅𝑚𝑗 if the value of 𝑁𝑊𝑚𝑗 in the 

model is lower than in the data, reduce it otherwise; increase 𝐸̅𝑗
𝑠 if the value of 𝑁𝑊𝑗

𝑠  in 

the model is lower than in the data, reduce it otherwise. 

(l) Update the WFH aversion 𝜍𝑚
𝑠 : increase 𝜍𝑚

𝑠  if the average 𝜃 of type (𝑚, 𝑠) in the data 

is greater than the value of 𝜃̅𝑚
𝑠 ; reduce 𝜈𝑚

𝑠  otherwise. 

(m) Update the WFH productivity 𝜈𝑚
𝑠 : increase 𝜈𝑚

𝑠  if the wage ratio between 
telecommutable workers with 𝜃 < 0.1 to those with 𝜃 > 0.9 is lower than the wage gap 
between those who work from home full-time to those who commute full time in the 
data; reduce 𝜈𝑚

𝑠  otherwise. 

 

52 As discussed in Section C.2, our model is overidentified because employment amenities determine both local 
employment by industry and education and the college wage premium in the non-tradable sector. Thus, we take 
wages in the tradable sector directly from the data, while wages in the non-tradable sector are determined within 
the model. 
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(n) Update 𝜏: increase 𝜏 if the ratio of average distance between residence and job site 
for “commuters” to “telecommuters” is higher in the model than its data counterpart; 
reduce 𝜏 otherwise. 

(o) Update the non-tradables expenditure share 𝛽: increase 𝛽 if the ratio between mean 
wages in tradable/non-tradable sectors is lower in the model than in the data; decrease 
𝛽 otherwise. 

(p) Return to step (2a) and repeat the sequence, unless moments computed in steps 
(2a), (2b), (2c), (2d), (2i), and (2j) in the model are equal to their counterparts in the data 
within a tolerance limit. 

3. Construct education-industry amenities as 𝑋𝑚𝑖
𝑠 = 𝑋𝑚𝑖𝑋𝑖

𝑠 and 𝐸𝑚𝑗
𝑠 = 𝐸𝑚𝑗𝐸𝑗

𝑠. 

4. Compute the exogenous part of amenities, 𝑥̃𝑚𝑖
𝑠 ≡ 𝑥𝑚𝑖

𝑠 Λ𝑖
−𝜒

, using equation (3.27) as follows: 

𝑥̃𝑚𝑖
𝑠 = 𝑋𝑚𝑖

𝑠 /(𝑁𝑅𝑖)
𝜒, where 𝑁𝑅𝑖  and 𝑁𝑊𝑇𝑗 are constructed using probabilities computed in step 

(2a). 

5. Compute the exogenous part of productivity, 𝑎̃𝑚𝑖 ≡ 𝑎𝑚𝑖Λ𝑖
−𝜆, using equation (3.26) as 

follows: 𝑎̃𝑚𝑖 = 𝐴𝑚𝑗/(𝑁𝑊𝐶𝑗 + 𝜓𝑁𝑊𝑇𝑗)
𝜆
, where 𝑁𝑊𝐶𝑗  and 𝑁𝑊𝑇𝑗 are constructed from choice 

probabilities computed in step (2a), and commuting frequencies computed in step (2b). Figure 
J.6 shows calibrated values of 𝐴𝑚𝑗 on a map. 

6. Compute floorspace demand 𝐻𝑖 and then compute construction sector productivities, 𝜙̃𝑖 ≡

𝜙𝑖Λ𝑖, using equations (3.24) and (3.25) as follows: 𝜙̃𝑖 = 𝐻𝑖𝑞𝑖

−
1

𝜂𝑖(1 − 𝜂𝑖)
−

1−𝜂𝑖
𝜂𝑖 .  

C.2. Proof of Proposition 1: Existence and Uniqueness of model Inversion  

In what follows we prove that there exists a unique set of parameters consistent with the data 

being an equilibrium of the model.53 These parameters are 𝑎̃𝑚𝑖 ≡ 𝑎𝑚𝑖Λ𝑖
−𝜆, 𝑥̃𝑚𝑖

𝑠 ≡ 𝑥𝑚𝑖
𝑠 Λ𝑖

−𝜒
, 𝜙̃𝑖 ≡

𝜙𝑖Λ𝑖, 𝑋𝑚𝑖, 𝑋𝑖
𝑠, 𝐸𝑚𝑗, 𝐸𝑗

𝑠, and 𝜔𝑚𝑗. 

Existence and uniqueness of employment amenities. Recall that we assume that employment 
amenities can be split into an education- and an industry-specific component as 𝐸𝑚𝑗

𝑠 = 𝐸𝑚𝑗𝐸𝑗
𝑠. 

Note that once the markets for non-college and college labor, as well as labor in the non-
tradable industry clear, the market for labor in the tradable industry will clear as well. Thus, we 

 

53 The proof follows closely Ahlfeldt, Redding, Sturm, and Wolf (2015) (see Propositions S.3 and S.4 in their 
appendix) but requires extra steps due to the nature of our model and data. When appropriate, we refer to 
lemmas and equations in their proof. 
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can normalize 𝐸𝐺𝑗 = 1 for all 𝑗. Define composite employment amenities as a function of 

amenities per se and wages:  

 𝐸̂𝑚𝑗𝐸̂𝑗
𝑠 = 𝐸𝑚𝑗𝐸𝑗

𝑠𝑤𝑚𝑗
𝑠 . (C.2) 

In equilibrium, these three labor market clearing conditions must hold in each location:  

𝐷𝑊𝑗
𝐿 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) ≡ 𝑁𝑊𝑗

𝐿 − ∑𝑖 𝑁𝑅𝑖
𝐿 ∑𝑜 [

(𝐸̂𝑆𝑗𝐸̂𝑗
𝐿Φ𝑆𝑖𝑗

𝐿𝑜 )
𝜖

∑𝑗′ (𝐸̂𝑆𝑗′𝐸̂𝑗′
𝐿 Φ𝑆𝑖𝑗′

𝐿𝑜 )
𝜖 𝑛𝑅𝑆𝑖

𝐿𝑜 +
(𝐸̂𝑗

𝐿Φ𝐺𝑖𝑗
𝐿𝑜 )

𝜖

∑𝑗′ (𝐸̂𝑗′
𝐿 Φ𝐺𝑖𝑗′

𝐿𝑜 )
𝜖 𝑛𝑅𝐺𝑖

𝐿𝑜 ] = 0, (C.3) 

𝐷𝑊𝑗
𝐻 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) ≡ 𝑁𝑊𝑗

𝐻 − ∑𝑖 𝑁𝑅𝑖
𝐻 ∑𝑜 [

(𝐸̂𝑆𝑗𝐸̂𝑗
𝐻Φ𝑆𝑖𝑗

𝐻𝑜)
𝜖

∑𝑗′ (𝐸̂𝑆𝑗′𝐸̂𝑗′
𝐻Φ𝑆𝑖𝑗′

𝐻𝑜 )
𝜖 𝑛𝑅𝑆𝑖

𝐻𝑜 +
(𝐸̂𝑗

𝐻Φ𝐺𝑖𝑗
𝐻𝑜)

𝜖

∑𝑗′ (𝐸̂𝑗′
𝐻Φ𝐺𝑖𝑗′

𝐻𝑜 )
𝜖 𝑛𝑅𝐺𝑖

𝐻𝑜 ] = 0, (C.4) 

𝐷𝑊𝑆𝑗(𝐄̂
𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) ≡ 𝑁𝑊𝑆𝑗 − ∑𝑖 𝑁𝑅𝑆𝑖 ∑𝑜 [

(𝐸̂𝑆𝑗𝐸̂𝑗
𝐿Φ𝑆𝑖𝑗

𝐿𝑜 )
𝜖

∑𝑗′ (𝐸̂𝑆𝑗′𝐸̂𝑗′
𝐿 Φ𝑆𝑖𝑗′

𝐿𝑜 )
𝜖 𝑛𝑅𝑆𝑖

𝐿𝑜 +
(𝐸̂𝑆𝑗𝐸̂𝑗

𝐻Φ𝑆𝑖𝑗
𝐻𝑜)

𝜖

∑𝑗′ (𝐸̂𝑆𝑗′𝐸̂𝑗′
𝐻Φ𝑆𝑖𝑗′

𝐻𝑜 )
𝜖 𝑛𝑅𝑆𝑖

𝐻𝑜 ] = 0, (C.5) 

where Φ𝑚𝑖𝑗
𝑠𝑜 ≡

1

𝑔𝑖𝑗𝑑𝑚𝑖𝑗
𝑠𝑜

Ω𝑚𝑖𝑗
𝑠𝑜

𝑝𝑖
𝛽
𝑞𝑖

𝛾 and 𝑛𝑅𝑚𝑖
𝑠𝑜 ≡ 𝑁𝑅𝑚𝑖

𝑠𝑜 /𝑁𝑅𝑚𝑖.
54 Note that 𝑑𝑚𝑖𝑗

𝑠𝑜  and Ω𝑚𝑖𝑗
𝑠𝑜  are functions of 

observed floorspace prices and the productivity of telework. Each of these conditions are of the 
form of the market clearing condition (S.43) in Ahlfeldt, Redding, Sturm, and Wolf (2015). Thus, 

using the same steps as in their Lemma S.6, we can show that function 𝐷𝑊𝑗
𝑠 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) is 

continuous, homogeneous of degree zero, and exhibits gross substitution in 𝐄̂𝑠 for all 𝑠 ∈

{𝐿, 𝐻}. Similarly, function 𝐷𝑊𝑆𝑗(𝐄̂
𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) is continuous, homogeneous of degree zero, and 

exhibits gross substitution in 𝐄̂𝑆. Moreover, ∑𝑗 𝐷𝑊𝑗
𝑠 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) = 0 and 

∑𝑗 𝐷𝑊𝑆𝑗(𝐄̂
𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) = 0 for all 𝑠 ∈ {𝐿, 𝐻}, 𝑗 ∈ ℐ, and {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} ∈ ℝ+

𝐼 × ℝ+
𝐼 × ℝ+

𝐼 . 

Next, using the same steps as in Lemma S.7 in [?], we can demonstrate that, given the 

parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 } and observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭}: (1) conditional on 𝐄̂𝑆, there 

exists a unique vector 𝐄̂𝐿 that solves (3) for all 𝑗; (2) conditional on 𝐄̂𝑆, there exists a unique 

vector 𝐄̂𝐻 that solves (4) for all 𝑗; and (3) conditional on {𝐄̂𝐿 , 𝐄̂𝐻}, there exists a unique vector 

𝐄̂𝑆 that solves (5) for all 𝑗. However, uniqueness of each vector of employment amenities 

conditional on another vector does not imply that the set of vectors {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} consistent 

with labor market clearing is unique. In order to show that it is indeed unique, we employ a 
strategy similar to the first part of the proof of Lemma S.7 in Ahlfeldt, Redding, Sturm, and Wolf 
(2015). 

Lemma C.1 Given the parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 , 𝜍𝑚
𝑠 } observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭}, there 

exist a unique set of vectors {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} such that conditions (3), (4), and (5) hold for all 𝑗. 

 

54 Even though employment shares 𝑛𝑅𝑚𝑖
𝑠𝑜  are unobserved, their presence does not change the properties of market 

clearing conditions that are required for the set of employment amenities to exist and be unique. 



 

 57 

Proof. The existence of {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} is guaranteed by the existence of each separate vector 𝐄̂𝐿, 

𝐄̂𝐻, and 𝐄̂𝑆 that solves equations (C.3), (C.4), and (C.5), respectively, that we established above. 
Below we show that this set is also unique. 

Denote by 𝐷𝑊(𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) a stacked 3𝐼 × 1 vector that is composed of 𝐷𝑊𝑗
𝐿 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆), 

𝐷𝑊𝑗
𝐻 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆), and 𝐷𝑊𝑆𝑗(𝐄̂

𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) for all 𝑗. Suppose that there exist two sets {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} 

and {𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆} such that {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} ≠ {𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆}, while 𝐷𝑊(𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) =

𝐷𝑊(𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆) = 𝟎. By homogeneity of degree zero, we can rescale each of 𝐄̃𝐿, 𝐄̃𝐻, and 𝐄̃𝑆 

such that 𝐸̃𝑗
𝐿 ≥ 𝐸̂𝑗

𝐿, 𝐸̃𝑗
𝐻 ≥ 𝐸̂𝑗

𝐻, and 𝐸̃𝑆𝑗 ≥ 𝐸̂𝑆𝑗  for all 𝑗, whereas 𝐸̃𝑖
𝐿 = 𝐸̂𝑖

𝐿, 𝐸̃𝑖
𝐻 = 𝐸̂𝑖

𝐻, and 𝐸̃𝑆𝑖 =

𝐸̂𝑆𝑖  for some 𝑖. Next, consider adjusting {𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆} to {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} in 𝐼 − 1 steps. By gross 

substitution, the excess labor demand in location 𝑖 cannot decrease in any step and must 

increase in at least one step. Therefore, 𝐷𝑊𝑖
𝐿 (𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆) > 𝐷𝑊𝑖

𝐿 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆), 𝐷𝑊𝑖
𝐻 (𝐄̃𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆) >

𝐷𝑊𝑖
𝐻 (𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆), and 𝐷𝑊𝑆𝑖(𝐄̃

𝐿 , 𝐄̃𝐻 , 𝐄̃𝑆) > 𝐷𝑊𝑆𝑖(𝐄̂
𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆), a contradiction. Thus, there exists a 

unique set of vectors {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} such that 𝐷𝑊(𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆) = 𝟎.  

Existence and uniqueness of residential amenities. We can also define the following labor 
market clearing conditions in terms of the number of residents:  

𝐷𝑅𝑗
𝐿 (𝐗𝐿 , 𝐗𝐻 , 𝐗𝑆) ≡ 𝑁𝑅𝑗

𝐿 − ∑𝑗 𝑁𝑊𝑗
𝐿 ∑𝑜 [

(𝑋𝑆𝑖𝑋𝑖
𝐿Φ𝑆𝑖𝑗

𝐿𝑜 )
𝜖

∑𝑖′ (𝑋𝑆𝑖′𝑋𝑖′
𝐿Φ𝑆𝑖′𝑗

𝐿𝑜 )
𝜖 𝑛𝑊𝑆𝑗

𝐿𝑜 +
(𝑋𝑖

𝐿Φ𝐺𝑖𝑗
𝐿𝑜 )

𝜖

∑𝑖′ (𝑋𝑖′
𝐿Φ𝐺𝑖′𝑗

𝐿𝑜 )
𝜖 𝑛𝑊𝐺𝑗

𝐿𝑜 ] = 0, (C.6) 

𝐷𝑅𝑗
𝐻 (𝐗𝐿 , 𝐗𝐻 , 𝐗𝑆) ≡ 𝑁𝑅𝑗

𝐻 − ∑𝑗 𝑁𝑊𝑗
𝐻 ∑𝑜 [

(𝑋𝑆𝑖𝑋𝑖
𝐻Φ𝑆𝑖𝑗

𝐻𝑜)
𝜖

∑𝑖′ (𝑋𝑆𝑖′𝑋𝑖′
𝐻Φ𝑆𝑖′𝑗

𝐻𝑜 )
𝜖 𝑛𝑊𝑆𝑗

𝐻𝑜 +
(𝑋𝑖

𝐻Φ𝐺𝑖𝑗
𝐻𝑜 )

𝜖

∑𝑖′ (𝑋𝑖′
𝐻Φ𝐺𝑖′𝑗

𝐻𝑜 )
𝜖 𝑛𝑊𝐺𝑗

𝐻𝑜 ] = 0, (C.7) 

𝐷𝑅𝑆𝑗(𝐗
𝐿 , 𝐗𝐻 , 𝐗𝑆) ≡ 𝑁𝑅𝑆𝑗 − ∑𝑗 𝑁𝑊𝑆𝑗 ∑𝑜 [

(𝑋𝑆𝑖𝑋𝑖
𝐿Φ𝑆𝑖𝑗

𝐿𝑜 )
𝜖

∑𝑖′ (𝑋𝑆𝑖′𝑋𝑖′
𝐿Φ𝑆𝑖′𝑗

𝐿𝑜 )
𝜖 𝑛𝑊𝑆𝑗

𝐿𝑜 +
(𝑋𝑆𝑗𝑋𝑖

𝐻Φ𝑆𝑖𝑗
𝐻𝑜)

𝜖

∑𝑖′ (𝑋𝑆𝑖′𝑋𝑖′
𝐻Φ𝑆𝑖′𝑗

𝐻𝑜 )
𝜖 𝑛𝑊𝑆𝑗

𝐻𝑜 ] =. (C.8) 

Then we could proceed exactly as above to show that there exists a unique set {𝐗𝐿 , 𝐗𝐻, 𝐗𝑆} 
consistent with those market clearing conditions. 

Lemma C.2 Given the parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 , 𝜍𝑚
𝑠 } and observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭}, 

there exists a unique set of vectors {𝐗𝐿 , 𝐗𝐻 , 𝐗𝑆} such that conditions (C.6), (C.7), and (C.8) hold 
for all 𝑗. 

Proof. The proof is identical to the proof of Lemma C.1.  

Decomposition of wages and employment amenities. We have shown the uniqueness of 
composite employment amenities that incorporate wages (equation C.2). Given that we 
observe wages by education and industry for each model location, we can now decompose the 

amenities in the tradable sector 𝐄̂𝐺
𝑠  into a non-wage component 𝐄𝐺

𝑠  and wages. We can also 

determine the college premium, 𝑤𝑆𝑗
𝐻/𝑤𝑆𝑗

𝐿 , but not wage levels, in the non-tradable sector. 
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Lemma C.3 Given the parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 , 𝜍𝑚
𝑠 } observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭, 𝐰̂𝐺

𝑠}, 
there exists a unique vector 𝐄𝐺

𝑠  for each 𝑠 ∈ {𝐿, 𝐻} and a unique college wage premium in the 
non-tradable sector. 

Proof. Note, by inspection of the indirect utility function (3.1) and choice probability (3.3), that 

uniqueness of {𝐄̂𝐿 , 𝐄̂𝐻 , 𝐄̂𝑆} and 𝐗𝑚
𝑠  implies that choice probabilities are also unique, conditional 

on observables. Here each element of 𝐗𝑚
𝑠  is 𝑋𝑚𝑖

𝑠 = 𝑋𝑖
𝑠𝑋𝑚𝑖 This means that there is a unique 

mapping between education-industry-specific wages in the tradable sector observed in the 
data, 𝑤̂𝐺𝑗

𝑠 , and their model counterpart, 𝑤𝐺𝑗
𝑠 , as given by equation (A.3). Once wages are 

known, we can solve for 𝐸𝑗
𝑠 = 𝐸̂𝑗

𝑠/𝑤𝐺𝑗
𝑠 , where we used the fact that 𝐸̂𝐺𝑗 = 1. 

Next, observe that in the non-tradable sector, 𝐸̂𝑗
𝑠𝐸̂𝑆𝑗 = 𝐸𝑗

𝑠𝐸𝑆𝑗𝑤𝑠𝑗
𝐻 . Though we cannot separately 

identify amenities from wages, we can determine the college wage premium as  

 
𝑤𝑆𝑗

𝐻

𝑤𝑆𝑗
𝐿 =

𝐸̂𝑗
𝐻𝐸̂𝑆𝑗

𝐸̂𝑗
𝐿𝐸̂𝑆𝑗

𝐸̂𝑗
𝐿

𝐸̂𝑗
𝐻, (C.9) 

since both ratios on the right-hand side are identified.  

Existence and uniqueness of local productivities. The following result demonstrates that there 
are unique vectors of parameters that determine local productivity in tradable sector, non-
tradable sector, and construction that are consistent with observed data and unobserved skill 
and occupation shares. 

Lemma C.4 Given the parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 , 𝜍𝑚
𝑠 }, observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭, 𝐰̂𝐺

𝑠}, 
employment amenities in the tradable sector 𝐄𝐺

𝑠 , college wage premium in the non-tradable 

sector 𝑤𝑆𝑗
𝐻/𝑤𝑆𝑗

𝐿 , and residential amenities 𝐗𝑚
𝑠 , there exist unique vectors 𝜔𝑚 ∈ ℝ++

𝐼  and 𝐀𝑚 ∈

ℝ++
𝐼  for each 𝑚 ∈ {𝐺, 𝑆}, and a unique vector 𝛟̃ ∈ ℝ++

𝐼 . 

Proof. There is sufficient information to construct a unique matrix of choice probabilities. Thus, 
the results follow immediately from equation (C.1), the zero-profit condition (3.21), and the 
land and floorspace market clearing conditions, (3.24) and (3.25).  

Wages in the non-tradable sector. Note that our model is overidentified because employment 
amenities determine both local employment by industry and education and, as shown in 
equation (C.9), the college wage premium in the non-tradable sector. Thus, while our 
quantitative model takes wages in the tradable sector directly from the data, wages in the non-
tradable sector are determined within the model. To identify wages in the non-tradable sector, 
we use the values of 𝐀𝑚 and 𝜔𝑚, and equation (3.15). 

Existence and uniqueness of exogenous components of amenities and productivity. The last 
result demonstrates that there are unique vectors of parameters that determine local 
amenities that are consistent with observed data and unobserved skill and occupation shares. 

Lemma C.5 Given the parameters {𝜖, 𝜅, 𝜏, 𝛼, 𝜁𝑚
𝑠 , 𝜈𝑚

𝑠 , 𝜍𝑚
𝑠 }, observables {𝐍𝑊𝑚, 𝐍𝑅𝑚, 𝐪, 𝐩, 𝐭, 𝐰̂𝐺

𝑠}, 
employment amenities in the tradable sector 𝐄𝐺

𝑠 , college wage premium in the non-tradable 
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sector 𝑤𝑆𝑗
𝐻/𝑤𝑆𝑗

𝐿 , residential amenities 𝐗𝑚
𝑠 , and productivities 𝐀𝑚 there exist unique vectors 𝑎𝑚 

and 𝑥𝑚
𝑠 . 

Proof. The results follow immediately from equations that determine local productivity and 
amenities, (3.26) and (3.27).  

D. Measuring Relocation of Residence 

We define a measure of the magnitude of shifts in the distribution of residents between our 
benchmark and counterfactual economies, which we call the relocation index, as follows. 

Consider all workers with skill 𝑠 and occupation 𝑜 who have chosen to work in industry 𝑚. Note 
that the choice of industry occurs before these workers know the values of their idiosyncratic 
location preference shocks. After these shocks are observed, the workers will choose the 
residence-workplace location pair. The measure of type-(𝑠, 𝑜,𝑚) workers who have chosen 
residential location 𝑖 is 𝜋𝑚𝑖

𝑠𝑜 = ∑𝑗 𝜋𝑚𝑖𝑗
𝑠𝑜 . Next, assume that in the counterfactual each worker 

draws exactly the same vector of location preference shocks as in the benchmark economy but 
may draw a different industry preference shock. The measure of type-(𝑠, 𝑜,𝑚) workers who 
have chosen residential location 𝑖 is 𝜋̃𝑚𝑖

𝑠𝑜 = ∑𝑗 𝜋̃𝑚𝑖𝑗
𝑠𝑜 , where 𝜋̃ are choice probabilities in the 

counterfactual economy. 

The assumption that each worker experiences the same location preference shocks implies 
that, conditional on having chosen the same industry 𝑚, a worker will only choose to move to a 
different residential location 𝑖 if the value of living in 𝑖, relative to all other locations, has fallen. 
The relative value of living 𝑖 falls if and only if the probability of choosing this locations falls. 
Therefore, the magnitude of the relocation of type-(𝑠, 𝑜,𝑚) workers to/from location 𝑖 is  

 Δ𝜋𝑚𝑖
𝑠𝑜 = 𝜋̃𝑚𝑖

𝑠𝑜 − 𝜋𝑚𝑖
𝑠𝑜 . 

Then, the economy-wide relocation index is equal to  

 
1

2
∑𝑠 ∑𝑜 ∑𝑚 ∑𝑖 |Δ𝜋𝑚𝑖

𝑠𝑜 |, 

where we divided by 2 in order to adjust for the double-counting of movers.55 We can also 
define the relocation index at the level of MSAs in the same way. 

We calculate that the relocation index is 5% at the level of model locations and 3.3% at the 
level of MSAs. That is, about 2/3 of relocations between the benchmark and the counterfactual 
economies are relocations across metro areas and the remaining 1/3 are relocations within 
metro areas. 

 

55 When a worker relocates out of location 𝑖 he also relocates into some other location 𝑖′. 
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E. Measuring Welfare Changes 

Overall welfare. Our measure of worker’s welfare is 𝑉𝑠𝑜, given by (3.7). As 𝑣𝑚𝑖𝑗
𝑠𝑜  is proportional 

to optimal composite consumption, 𝑤̃𝑚𝑖𝑗
𝑠𝑜 𝑝𝑖

−𝛽
𝑞𝑖

−𝛾
, the percentage change in consumption-

equivalent welfare is equal to the percentage change in 𝑉𝑠𝑜. To find the economy-wide change 
in welfare, we compute the percentage change in the weighted-average of 𝑉𝑠𝑜, i.e., 𝑉 ≡
∑𝑠 ∑𝑜 𝔩𝑠𝑜𝑉𝑠𝑜. In our calculations, we adjust the counterfactual disutility of commuting, 𝑑𝑚𝑖𝑗

𝑠𝑜 , to 

reflect changes in commuting frequencies but not the changes in 𝜍𝑚
𝑠 , the aversion to work from 

home.  

Sources of welfare gains. We are interested in the relative roles of changes in consumption, 
commuting costs, and amenities. Thus, we compute changes in weighted-average indirect 
utilities and isolate each of these sources. To measure the part from consumption only, we 
compute  

 𝑉C
𝑠𝑜 = ∑𝑚 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 𝑤̃𝑚𝑖𝑗
𝑠𝑜 𝑝𝑖

−𝛽
𝑞𝑖

−𝛾
. (E.1) 

The part from consumption and commuting costs is computed as  

 𝑉CC
𝑠𝑜 = ∑𝑚 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 (1/𝑑𝑚𝑖𝑗
𝑠𝑜 )𝑤̃𝑚𝑖𝑗

𝑠𝑜 𝑝𝑖
−𝛽

𝑞𝑖
−𝛾

. (E.2) 

Finally, the contribution of consumption, commuting costs, and amenities to welfare is 
computed as  

 𝑉CCA
𝑠𝑜 = ∑𝑚 ∑𝑖 ∑𝑗 𝜋𝑚𝑖𝑗

𝑠𝑜 𝑋𝑚𝑖
𝑠 𝐸𝑚𝑗

𝑠 (1/(𝑔𝑖𝑗𝑑𝑚𝑖𝑗
𝑠𝑜 ))𝑤̃𝑚𝑖𝑗

𝑠𝑜 𝑝𝑖
−𝛽

𝑞𝑖
−𝛾

. (E.3) 

The effect of amenities comes both from endogenous changes in residential amenities 𝑋𝑚𝑖
𝑠  and 

migration to places with different amenities. As in the case of total welfare, we adjust 𝑑𝑚𝑖𝑗
𝑠𝑜  to 

reflect changes in commuting frequencies but not in the telework aversion. 

Landlord’s income. We do not take a stance on the weight of landlords in the social welfare 
function and compare changes in their income alongside changes in workers’ welfare. 
Landlords’ only income source are proceeds from land sales, and their aggregate income is  

 ∑𝑖 𝜂𝑖𝑞𝑖𝐻𝑖 . (E.4) 

F. In Focus: New York Metropolitan Area 

In Section 5.2 of the main paper, we discussed how the reduction in the work-from-home 
aversion affects the largest metropolitan area in the country-New York. Here we provide a 
more in-depth discussion of spatial changes in the New York metro area. 

Figure F.1 shows reallocation patterns for all residents and all jobs. Let us now take a look at the 
breakdown of movements of residents. As panel (a) makes clear, workers with telecommutable 
occupations overwhelmingly leave central areas and move to peripheral areas-the same 
pattern we see countrywide. In panel (b), we see workers with non- telecommutable 
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occupations move downtown in signficiant numbers, off-setting much of the telecommutable 
exodus. 

In panel (c), we see a heavy exodus of tradable industry jobs from nearly all locations near the 
center of the city. At the same time, panel (d) shows strong tradable industry job gains for 
downtown, with some losses in peripheral suburbs. 

Panel (e) maps changes in floorspace prices, which are most strongly negative in downtown 
Manhattan, and positive in many outlying areas. Panel (f) maps changes in the price of non-
tradables. In outlying areas they mostly increase, which can be interpreted as indicating that 
rising demand from more residents overwhelms the cost-lowering effect of lower floorspace 
prices. In some of the most central locations the price of non-tradables falls, indicating that the 
effect of lower floorspace prices dominates. 
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Figure F.1. New York metro area, predicted changes in residence, jobs, and prices 
Note: The maps show absolute changes in the number of telecommutable residents (panel a), non-
telecommutable residents (panel b), non-tradable jobs (panel c) and tradable jobs (panel d) per square kilometer 
in the main counterfactual exercise. Panel (e) shows percentage changes in floorspace prices and panel (f) shows 
percentage changes in non-tradable goods prices. 

G. Further Discussion of Alternative Counterfactuals 

In this section, we study alternative counterfactuals in order to understand which channels are 
important in driving resident and job reallocations, as well as aggregate changes. We start with 
a world in which the aversion to telecommuting decreases but workers are unable to move and 
floorspace supply does not change (counterfactual 1). Then we switch on the reallocation of 
workers to new residences and jobs (counterfactual 2). After that, floorspace supply adjusts 
(counterfactual 3). Next, residential amenities adjust (counterfactual 4), and then local 
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productivity adjusts (counterfactual 5). This last stage brings us all the way up to our original 
focus point-the long run with full adjustment. Finally, we run a counterfactual in which working 
at home contributes to productive externalities in the main job site as much as working on site 
by setting ty = 1 (counterfactual 6). 

Table G.1 reports results for each scenario. In counterfactual (1), we see that average welfare 
rises as soon as remote work becomes more accessible, even before workers can move and 
floorspace supply can change. However, gains are only experienced by telecommutable 
workers. These enjoy higher income from a more productive combination of at-home and on-
site time, and less time spent commuting. Among those who cannot work from home, non-
college workers see essentially no change while college workers have 1.7% lower welfare. This 
can be attributed to the impact of general equilibrium labor supply changes on income for each 
group. A larger proportion of college workers are remote-capable, and they are slightly more 
productive working at home. In the counterfactual this leads to an aggregate increase in the 
supply of college-educated labor. This bolsters the wages of non-college workers, their 
complements; and puts downward pressure on the wages of non-telecommutable college 
workers, who compete directly. 

In counterfactual (2), when workers are allowed to choose new jobs and residences but 
floorspace allocations remain the same, non-telecommutable workers are able to increase their 
income by moving into jobs in central locations left behind by remote workers. Non-
telecommutable workers also take advantage of reduced floorspace demand in central areas to 
move slightly closer to their jobs, reducing their time spent commuting by 0.6%. We also see a 
gap emerge between the income gains of college remote-capable workers, and the gains of 
their non-college counterparts. This can be attributed to an industry composition effect: a 
greater proportion of college workers are employed in the tradable sector, and are thus able to 
take advantage of easier remote work to match with more productive job sites. Non-tradable 
employment, however, follows residents to less productive locations, as evidenced by the 
increase in non-tradable prices. This reduces income gains for non-college remote workers. This 
counterfactual also leads to the most extreme shifts in floorspace prices of any of the scenarios 
we consider-under-utilized, centrally located commercial floorspace faces deep price cuts, 
while surging demand for residential floorspace drives steep price increases.55 

Table G.1. Aggregate results, alternative counterfactuals 

WFH aversion falls: ✓ ✓ ✓ ✓ ✓ ✓ 

Residents and jobs reallocate: — ✓ ✓ ✓ ✓ ✓ 

Floorspace adjusts: — — ✓ ✓ ✓ ✓ 

Residential amenities adjust: — — — ✓ ✓ ✓ 

Labor productivity adjusts: — — — — ✓ ✓ 

Telecommuters add to productivity: — — — — — ✓ 

  (1) (2) (3) (4) (5) (6) 

Income, % chg       

All workers 2.9 5.7 3.6 3.6 1.6 3.6 

Non-college, non-telecommutable 0.5 6.3 2.5 2.6 0.6 2.7 
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Non-college, telecommutable 7.5 2.2 3.9 3.9 1.8 4.0 

College, non-telecommutable -1.1 4.5 0.2 0.2 -1.7 0.1 

College, telecommutable 6.7 7.7 7.4 7.3 5.3 7.2 

Floorspace prices, % chg       

Residential 1.6 16.0 1.1 0.4 -0.8 -0.1 

Commercial -5.2 -16.5 — — — — 

Non-tradable goods prices, % chg 0.4 2.7 3.5 3.4 3.5 3.3 

Average time to work, % chg 0.0 46.4 51.5 52.2 52.0 52.9 

Time spent commuting, all workers, % chg -17.4 -19.3 -20.6 -20.4 -20.5 -20.2 

Time spent commuting, commuters (𝜃=1), % chg 0.0 -0.6 -0.7 -0.3 -0.4 0.0 

Distance traveled, all workers, % chg  -17.5 -19.9 -21.4 -20.9 -21.1 -20.5 

Average WFH days/week, chg 0.7 0.9 0.9 0.9 0.9 0.9 

Welfare, % chg       

All workers, % chg 7.6 7.5 8.9 9.1 7.2 9.2 

Non-college, non-telecommutable 0.0 0.8 0.1 0.2 -1.5 0.3 

Non-college, telecommutable 48.9 39.9 49.1 49.6 46.9 50.1 

College, non-telecommutable -1.7 -0.5 -1.6 -1.8 -3.4 -1.8 

College, telecommutable 21.3 22.7 30.0 30.3 28.0 30.5 

Landlord income, % chg 2.1 25.5 3.1 2.9 1.0 2.7 

Due to change in demand 2.2 28.1 3.9 3.9 1.9 3.9 

Due to reallocation to low 𝜂𝑖 0.0 -2.6 -0.7 -1.0 -0.8 -1.2 

Note: Columns (1)-(6) present results from counterfactuals with different margins of adjustment turned on, as 
specified in the header of the table. Welfare changes in columns (2)-(6) are measured as changes in expected 
utility (equation 3.7). Since in the first counterfactual workers cannot move, welfare changes in column (1) are 
measured as changes in the utility from consumption and commuting.  

In counterfactual (3), allowing floorspace supply to adjust sharply cuts income gains by non-
telecommutable workers, as center-city offices are downsized and more employment shifts to 
less central locations. This also brings double-digit shifts in floorspace prices and land income 
down to a 1.1% and a 3.1% increase, respectively. The main impact of allowing residential 
amenities adjust in counterfactual (4) is to cause non-telecommutable workers to choose 
residences that are slightly farther away from their jobs, as some of the amenities have now 
followed remote workers out to the suburbs. In counterfactual (5), our main counterfactual, we 
see the impact of reduced agglomeration externalities from having workers out of the office. 
Income gains are cut by 2 percentage points across the board, in each category of worker. 

In counterfactual (6) working at home contributes to productive externalities in the main job 
site as much as working on site (𝜓 =  1). This could happen if remote interaction technology 
advances to the point that it can fully simulate the experience of being co-located with one’s 
collaborators thus eliminating any disadvantage remote work has in sparking spontaneous 
spillovers.56 Comparing columns 6 and 4 of Table G.1, we can see that income losses from 
reduced productivity are neatly reversed under this alternative assumption. 
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The top three panels in Figure G.1 plot reallocations of residents across counterfactuals (2) 
through (6). Obviously, in the first counterfactual, there is no reallocation of residents. Panel (a) 
shows the overall reallocation. Here, we see that each step accentuates the initial pattern-a net 
movement of residents from denser to less dense locations. Panels (b) and (c) break this down 
by occupation type, and reveal a heterogeneous pattern. For workers who can work from home 
in panel (c), things look similar to the overall average-each successive step accentuates 
reallocation from center to periphery. For workers who cannot work from home, in panel (b), 
the opposite happens-the reallocation from periphery to center is strongest in the second and 
third counterfactuals. In the fourth and fifth counterfactuals the reallocation into the city is 
smaller, as the telecommuting workers end up carrying a part of the city’s amenities out with 
them. Finally, in the sixth counterfactual, increased productivity in the periphery draws 
additional non-telecommutable workers out. In this scenario, non-telecommutable workers 
move out of medium-density locations, into both peripheral and central locations. 

 

Figure G.1. Changes in residents and jobs, counterfactuals (2)-(6)  
Note: This figure shows the relationship between residential density rank of model locations and counterfactual 
change in the resident density (panels a, b, and c) and job density (panel d, e, and f). Panel a shows changes for all 
residents, panel b shows changes for non-telecommutable residents, and panel c shows changes for 
telecommutable residents. Panel d shows changes for all jobs, panel e shows changes for non-tradable jobs, and 
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panel f shows changes for tradable jobs. The scatterplot in blue shows individual datapoints, and black and grey 
markers plot averages by ventile: i.e., below the 5th percentile, from the 5th to the 10th, and so on.  

The bottom three panels in Figure G.1 show reallocations of jobs across the second through 
sixth counterfactuals. As with residents, each successive step accentuates the main pattern of 
reallocation towards less dense locations. Glancing at panel (e), it is clear this is mostly driven 
by non-tradable sector jobs following the movement of residents. Looking at panel (f), it is 
interesting to note that the variations between counterfactuals (2), (3), (4), and (5) have very 
little effect on the reallocation of tradable jobs. Reallocations of labor in the tradable sector are 
driven by the broadening of the labor market which is already fully operative by counterfactual 
(2). In counterfactual (6), however, less-dense locations see a significant jump in 
competitiveness, as remote workers begin contributing to local TFP. 

H. Counterfactual: Increased Productivity of Remote Work 

In this section we consider a counterfactual in which increased working from home is due solely 
to increased productivity, rather than solely to changes in preferences as in the baseline 
counterfactual. While many of the patterns are similar to those seen in the baseline, it 
produces unrealistic increases in the wages of telecommuters, and performs poorly in 
predicting where people have actually moved since February 2020. Table H.1 reports the 
changes in productivity of work from home required to attain the predicted increase in work 
from home frequency. The productivity of remote work must go up by 69-195% depending on 
the type of worker. 

Distributions of residents and jobs. Figure H.1 shows changes in residents. Comparing it with 
Figure 7, we can see that the overall patterns are similar, except that the pattern of 
decentralization of residents among the densest locations and largest metro areas is more 
mixed. Next, comparing Figure H.2 with Figure 8, we can see that as with residents, the overall 
patterns of job reallocation are similar between this and the baseline counter- factual. The main 
driving force for the shifts in residents and jobs is greater attractiveness of work from home, 
whether due to lower aversion to it or due to its higher productivity. 

Table H.1. Relative productivity of remote work, baseline vs. counterfactual 

Description Variable Benchmark Counterfactual % Change 

Non-college, non-tradable 𝜈𝑆
𝐿 0.9734 2.8520 192.99% 

Non-college, tradable 𝜈𝐺
𝐿  1.1351 3.3519 69.48% 

College, non-tradable 𝜈𝑆
𝐻 1.0114 1.7141 195.29% 

College, tradable 𝜈𝐺
𝐻 1.2054 2.1614 79.31% 

Note: The table shows calibrated values of the relative productivity of remote work.  
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Figure H.1. Changes in Residents 
Note: Panel (a) shows the relationship between residential density rank for model locations and counterfactual 
change in log residential density. Panel (b) shows the relationship between total resident rank for metro areas and 
the counterfactual change in log total residents. Panel (c) repeats the exercise for non-telecommutable residents 
by model location, while panel (d) does the same for telecommutable residents. Scatterplots in gray show 
individual model locations or MSAs, while diamonds or circles represent averages by ventile: i.e., below the 5th 
percentile, from the 5th to the 10th, etc. 

Aggregate results and welfare effects. Table H.2 reports aggregate results from this 
counterfactual. Comparing with Table 7, we can see that changes in aggregate commuting 
behavior are similar. This is not surprising, as the same changes in average telecommuting 
frequencies are targeted in the calibration. However, the predictions for changes in income are 
very different. An average worker earns 50% more, with the increase driven entirely by 
telecommutable workers. Among these, college workers earn 69% more, while noncollege 
workers earn over 219% more. We find it hard to call the prediction of such increases in the 
wages of telecommutable professions, due solely to technological changes in the year or so 
after March 2020, anything but very unrealistic. 

Evidence during Covid-19. Finally, we compare this counterfactual’s predictions about 
reallocations of residents and changes in floorspace prices with observed migration and 
changes in housing rents and prices between 2019 and 2021, as we did in Section 5.4. 
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Figure H.2. Changes in Employment 
Note: Panel (a) shows the relationship between residential density rank for model locations and counterfactual 
change in log job density. Panel (b) shows the relationship between total resident rank for metro areas and the 
counterfactual change in log total jobs. Panel (c) repeats the exercise for non-tradable jobs by model location, 
while panel (d) does the same for tradable jobs. Scatterplots in gray show individual model locations or MSAs, 
while diamonds or circles represent averages by ventile: i.e., below the 5th percentile, from the 5th to the 10th, etc. 

Comparing column (1) in Table H.3 with column (1) in Table 8, we see that when it is assumed 
that increased work from home is driven only by productivity, the model is a much poorer 
predictor of observed shifts in residential population: the R2 falls from 0.29 to 0.1. Once initial 
density is controlled for (columns 2, 4, and 6), in fact, model projections have negative or zero 
correlation with actual changes. This is in contrast to the baseline counterfactual, which is a 
significant predictor of actual changes, even after density controls. Comparing the results for 
real estate prices in Table H.4 with those in Table 9, we see that assuming that the increase in 
remote work is due to productivity changes does not improve the predictive power of the 
model. 

One of the reasons for the inability of this counterfactual to predict observed shifts in 
population becomes clear when comparing Figures H.1 and 7: non-telecommutable workers 
move more strongly away from the periphery to central locations, dampening the net pattern 
of core-periphery reallocation. This is also a consequence of gigantic remote worker wage 
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increases-they use their higher incomes to rent more floorspace, pricing non-remote workers 
out of the rural and suburban real estate markets. 

Table H.2. Aggregate results 

  Non-college College 

 All workers All Non-
tel. 

Tel. All Non-
tel. 

Tel. 

Income, % chg 50.7 54.1 -3.5 219.0 44.7 2.1 68.8 

Average time to work, % chg 57.6 53.5 -1.8 163.8 66.3 -1.9 94.2 

Time spent commuting, % chg -20.5 -18.8 -1.8 -84.7 -25.0 -1.9 -43.1 

Average WFH days/week, chg 0.9 0.8 — 3.5 1.2 — 2.9 

Floorspace prices, % chg 31.2 32.0 33.3 27.5 29.4 31.5 28.0 

Non-tradable prices, % chg 10.8 10.9 10.9 11.0 10.4 10.4 10.4 

Welfare, % chg        

Consumption only 32.2 34.8 -16.3 179.7 27.3 -10.9 48.7 

+ commuting 29.8 33.8 -15.7 180.9 22.2 -10.2 41.3 

+ amenities 29.1 33.6 -12.2 170.0 22.1 -5.0 38.2 

Total welfare 30.1 21.9 -15.1 310.6 64.2 -9.3 87.5 

Note: The table shows results of the counterfactual exercise in which the rise of telecommuting is driven by an 
increase in the productivity of work from home, as described in the text. “tel.” refers to telecommutable workers, 
and “non-tel.” to non-telecommutable workers. Price changes refer to the change in the average price faced by a 
member of the indicated group of workers.  

Table H.3. Change in population during Covid-19, model vs. data 

 (1) (2) (3) (4) (5) (6) 

Log chg residents, model 0.923 -0.166 0.512 -0.0579 0.552 -0.124 

 (0.0404) (0.0340) (0.0437) (0.0422) (0.0737) (0.0691) 

Log density, data  -0.0786  -0.0633  -0.0547 

  (0.00124)  (0.00191)  (0.00281) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 4502 4502 4453 4453 723 723 

R-squared 0.104 0.527 0.650 0.729 0.0723 0.391 

Note: The table shows estimates from the regressions of log change in between December 2019 and December 
2021 from Safegraph data on the log change in residents in the model and log residential density in 2012-2016. 
Standard errors are in parentheses. The regressions are estimated at the level of model locations (“ML”), with or 
without commuting zone fixed effects, or at the level of commuting zones (“CZ”). Regressions at the model 
location level with commuting zone fixed effects have fewer observations because some commuting zones 
correspond to model locations. 
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Table H.4. Changes in housing rents and prices during Covid-19, model vs. data 

Panel (a): rents 

 (1) (2) (3) (4) (5) (6) 

Log chg rents, model 0.413 0.189 0.421 0.541 0.711 2.841 

 (0.152) (0.170) (0.185) (0.210) (1.621) (2.197) 

Log density, data  -0.0152  0.00779  0.130 

  (0.00520)  (0.00656)  (0.0912) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 1136 1136 1122 1122 98 98 

R-squared 0.00646 0.0139 0.153 0.154 0.00200 0.0230 

Panel (b): Prices 

 (1) (2) (3) (4) (5) (6) 

Log chg prices, model 0.143 0.0990 0.332 0.415 -0.152 0.0300 

 (0.0570) (0.0895) (0.0934) (0.129) (0.219) (0.320) 

Log density, data  -0.00193  0.00422  0.00903 

  (0.00304)  (0.00453)  (0.0116) 

Level of obs. ML ML ML ML CZ CZ 

CZ fixed effects No No Yes Yes — — 

Observations 4182 4182 4121 4121 688 688 

R-squared 0.00150 0.00160 0.342 0.342 0.000705 0.00159 

Note: The table shows estimates from the regressions of log change in rents (panel a) and prices (panel b) between 
December 2019 and December 2021 from Zillow on the log change in floorspace prices in the model and log 
residential density in 2012-2016. Standard errors are in parentheses. The regressions are estimated at the level of 
model locations (“ML”), with or without commuting zone fixed effects, or at the level of commuting zones (“CZ”). 
Regressions at the model location level with CZ fixed effects have fewer observations because some commuting 
zones correspond to model locations. 

I. Robustness 

I.1. No Penalty for Living Far from Home  

One of the innovations of our framework is the penalty for living far from the job site that 
applies regardless of the frequency of commuting, 𝑔𝑖𝑗. How different would our results be if we 

excluded 𝑔𝑖𝑗  from the location choice problem? 

To answer this question, we recalibrate our model by imposing 𝑧 = 0 which implies that 𝑔𝑖𝑗 =

 1 for all location pairs. Without the penalty, those workers who commute very infrequently are 
almost completely untethered from their job sites and can live virtually anywhere, contrary to 
the evidence on the locations of telecommuters that constitutes stylized fact #4 in Section 2. 
Column 2 of Table I.1 shows that all changes that we observed in our main counterfactual 
exercise (column 1) are greatly amplified: telecommutable workers relocate farther from job 
sites and their welfare gains are much more pronounced. 
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I.2. Equal Reduction in Work-from-Home Aversion  

In our main counterfactual, we found that non-college workers experience somewhat larger 
reductions in their aversion to remote work. This gives boost to counterfactual welfare gains 
experienced by non-college workers, even though their welfare still increases by only 4%, 
compared to 20.5% for college workers, primarily because there are more workers who can 
work from home among college graduates than among their non-college counterparts (see 
Table 7). How sensitive are our results to the differences in calibrated changes in dislike for 
telework? 

We recalibrate the post-Covid economy so that the aggregate reduction in work-from- home 
aversion is the same for all workers in all industries by targeting the overall, not education-
industry specific, increase in work from home. The calibrated fall in the aversion parameter, 𝜍𝑚

𝑆  
is 49% for all types of workers. Column 3 of Table I.1 compares the results of this counterfactual 
to the main counterfactual (column 1). The welfare gains of telecommutable college graduates 
become larger and the losses of non-telecommutable college graduates become smaller. At the 
same time, for non-college graduates the gains turn smaller and the losses larger. This implies 
that the gap in welfare gains between college and non-college workers would be even greater if 
we assumed the same reduction in work from home aversion for all worker types. 

I.3. Equal Floorspace Supply Elasticities  

In our quantitative model, we use estimates of floorspace supply elasticities from Baum- Snow 
and Han (2021). To our knowledge, these are the only estimates at a sufficiently high level of 
resolution (Census tracts) that can be applied to our model locations (see the map of elasticities 
in Figure J.5). At the same time, these elasticities are significantly lower than those estimated in 
prior literature (see discussion in Section 4.2.1). 
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Table I.1. Aggregate results, robustness counterfactuals 

 (1) 
Main 

CF 

(2) 
𝜏=0 

(3) 
Same 

chg 𝜍𝑚
𝑆  

(4) 
Same 
𝜂𝑖 

(5) 

𝑣𝑚
𝑆 =1 

Income, % chg      

All workers 1.6 1.1 2.0 1.5 -0.7 

Non-college, non-telecommutable 0.6 0.8 0.4 0.7 -0.5 

Non-college, telecommutable 1.8 1.5 4.9 1.8 -2.6 

College, non-telecommutable -1.7 -0.2 -1.4 -2.0 -1.9 

College, telecommutable 5.3 2.2 5.2 4.9 1.1 

Floorspace prices, % chg      

Residential -0.8 -1.7 -0.8 -1.6 -2.4 

Commercial 0.0 0.0 0.0 0.0 0.0 

Non-tradable goods prices, % chg 3.5 3.6 3.5 3.1 1.9 

Average time to work, % chg 52.0 193.2 51.2 53.3 52.5 

Time spent commuting, all workers, % chg -20.5 -19.9 -20.5 -20.2 -20.6 

Time spent commuting, commuters (𝜃=1), % chg -0.4 -0.2 -0.3 0.1 -0.4 

Distance traveled, all workers, % chg  -21.1 -21.1 -20.8 -20.0 -21.2 

Average WFH days/week, chg 0.9 0.9 0.9 0.9 0.9 

Welfare, % chg      

All workers, % chg 7.2 30.1 7.7 7.3 6.7 

Non-college, non-telecommutable -1.5 -1.5 -1.9 -1.5 -1.2 

Non-college, telecommutable 46.9 110.6 40.6 47.8 44.9 

College, non-telecommutable -3.4 -2.3 -3.0 -3.8 -2.3 

College, telecommutable 28.0 63.0 37.2 28.2 24.7 

Landlord income, % chg 1.0 0.1 1.4 1.8 -1.3 

Due to change in demand 1.9 1.4 2.3 1.8 -0.5 

Due to reallocation to low 𝜂𝑖 -0.8 -1.3 -0.9 0.0 -0.8 

Note: The table reports results of several alternative counterfactuals, as described in the text. 

To evaluate the sensitivity of our results to these elasticities, we re-calibrate the model by 
assigning the elasticity of 1.75 (this corresponds to 𝜂𝑖 =  0.36), as estimated in Saiz (2010), to 
all model locations. Column 4 of Table I.1 compares the results of this counterfactual to the 
main counterfactual (column 1). All results are quite close to the main counterfactual, which 
suggests that our predictions are robust to our choice of housing supply elasticities. 

I.4. Equal Productivity of Remote Work 

Our counterfactual results depend, to some extent, on the calibrated values of the relative 
productivity of remote work. In particular, many workers can increase their income by working 
from home more often because for most of the worker types remote work is more productive 
(see Table 5). To understand the role of exogenous productivity differences between on-site 

and remote work effort, we fix 𝜈𝑚 =  1 for all types, recalibrate the model, and rerun the main 
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counterfactual. The results in column 5 of Table I.1 show that, if remote work was as productive 
as on-site work, most workers would experience income losses and welfare gains would be less 
pronounced. 

J. Additional Figures, Tables, and Maps 

 

Figure J.1. Commuting flows and employment, model vs. data 
Note: These scatterplots show the relationship between commuting flows (panel a), log residents (panel b), and 
log jobs (panel c) in the LODES data and their counterparts in the model. The dashed line is the 45-degree line. 
Since over 98% of location pairs in the data have zero commuters, the logarithmic version of panel (a) is not 
feasible. 
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Figure J.2. Density of Residents 
Note: Panel (a) shows absolute changes in the number of residents per square kilometer in each model location in 
the main counterfactual where the aversion for work from home falls and all endogenous variables adjust. Panel 
(b) shows percentage changes.  
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Figure J.3. Density of jobs 
Note: Panel (a) shows absolute changes in the number of jobs per square kilometer in each model location in the 
main counterfactual where the aversion for work from home falls and all endogenous variables adjust. Panel (b) 
shows percentage changes. 
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Figure J.4. Floorspace prices, percentage changes 
Note: The map shows percentage changes in the price of floorspace in the main counterfactual where the aversion 
for work from home falls and all endogenous variables adjust. 

 

Figure J.5. Elasticities of floorspace supply 
Note: This map shows the floorspace supply elasticities from Baum-Snow and Han (2021), aggregated to the level 
of our model locations.  
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Figure J.6. Location-specific productivity, quantiles 
Note: Panel (a) shows quantiles of calibrated non-tradable sector location-specific productivities, ASj. Panel (b) 
shows quantiles of tradable sector location-specific productivities, AGj 
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Table J.1. Changes in residents in 50 largest MSAs 

MSA All residents Non-coll. Coll. Non-trad. Trad. Non-telec. Telec. 

% ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 

New York-Newark-Jersey City, NY-NJ-PA 0.5 42 60 -18 -22 64 128 -86 

Los Angeles-Long Beach-Anaheim, CA -3.5 -199 -107 -92 -177 -22 136 -335 

Chicago-Naperville-Elgin, IL-IN-WI -0.4 -19 -8 -11 -45 26 104 -122 

Dallas-Fort Worth-Arlington, TX -3.1 -99 -64 -35 -93 -6 123 -222 

Houston-The Woodlands-Sugar Land, TX -3.4 -96 -67 -28 -96 1 85 -181 

Philadelphia-Camden-Wilmington, PA-NJ-DE-
MD 

-0.1 -3 -2 -1 5 -9 -27 23 

Atlanta-Sandy Springs-Alpharetta, GA -0.4 -10 -3 -7 -34 24 50 -60 

Boston-Cambridge-Newton, MA-NH -3.2 -77 -37 -40 -57 -20 35 -111 

Miami-Fort Lauderdale-Pompano Beach, FL -5.8 -139 -87 -52 -96 -43 70 -209 

San Francisco-Oakland-Berkeley, CA -4.1 -89 -52 -37 -90 1 41 -130 

Washington-Arlington-Alexandria, DC-VA-
MD-WV 

0.2 4 9 -5 -16 19 24 -20 

Detroit-Warren-Dearborn, MI -2.5 -47 -17 -30 -17 -29 30 -77 

Phoenix-Mesa-Chandler, AZ -5.7 -106 -73 -32 -93 -13 62 -167 

Minneapolis-St. Paul-Bloomington, MN-WI -3.8 -70 -38 -33 -32 -38 36 -106 

Seattle-Tacoma-Bellevue, WA -5.9 -102 -57 -45 -84 -18 63 -165 

Riverside-San Bernardino-Ontario, CA 1.0 16 6 10 14 2 -50 66 

San Diego-Chula Vista-Carlsbad, CA -4.8 -67 -39 -28 -11 -55 -8 -58 

Denver-Aurora-Lakewood, CA -5.6 -74 -44 -30 -66 -9 52 -127 

St. Louis, MO-IL -2.0 -26 -17 -9 -21 -6 25 -51 

Baltimore-Colombia-Townson, MD -1.4 -18 -13 -4 -21 3 -12 -6 

Tampa-St. Petersburg-Clearwater, FL -4.4 -53 -39 -14 -29 -24 22 -75 

Pittsburg, PA -2.0 -22 -17 -6 -9 -14 -7 -15 

Charlotte-Concord-Gastonia, NC-SC 0.5 5 5 -0 3 2 21 -16 

Portland-Vancouver-Hillsboro, OR-WA -4.9 -54 -33 -21 -29 -24 22 -75 

Orlando-Kissimmee-Sanford, FL -3.6 -38 -29 -9 -15 -23 14 -52 

Cincinnati, OH-KY-IN 0.4 4 4 1 -4 8 5 -1 
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MSA All residents Non-coll. Coll. Non-trad. Trad. Non-telec. Telec. 

% ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 

Kansas City, MO-KS -2.8 -29 -15 -13 -17 -12 19 -47 

Cleveland-Elyria, OH -2.2 -22 -13 -9 -4 -18 -11 -11 

San Antonio-New Braunfels, TX -3.9 -38 -28 -10 -20 -18 -5 -33 

Indianapolis-Carmel-Anderson, IN -2.2 -21 -15 -6 -25 4 -3 -18 

Columbus, OH -1.0 -10 -3 -9 -4 -6 -0 -10 

Sacramento-Roseville-Folsom, CA -4.9 -45 -34 -11 -32 -13 -20 -25 

San Jose-Sunnyvale-Santa Clara, CA -3.5 -32 -17 -15 -29 -2 34 -65 

Austin-Round Rock-Georgetown, TX -3.6 -33 -19 -14 -18 -14 2 -34 

Las Vegas-Henderson-Paradise, NV -6.7 -59 -37 -22 -42 -17 28 -88 

Nashville-Davidson-Murfreesboro-Franklin, 
TN 

-1.8 -15 -8 -7 -18 3 3 -18 

Milwaukee-Waukesha, WI -3.9 -31 -22 -9 -21 -10 4 -35 

Providence-Warwick, RI-MA -2.9 -23 -17 -5 -22 -1 -6 -17 

Virginia Beach-Norfolk-Newport News, VA-NC -2.3 -15 -14 -0 -2 -13 -6 -9 

Jacksonville, FL -3.5 -22 -15 -6 -11 -10 10 -32 

Hartford-East Hartford-Middletown, CT -1.1 -7 -6 -1 -2 -5 -10 3 

Louisville/Jefferson County, KY-IN -0.6 -3 -3 -1 -6 3 2 -6 

Memphis, TN-MS-AR -1.8 -11 -5 -6 -1 -10 10 -20 

Raleigh-Cary, NC -4.7 -27 -16 -11 -25 -2 4 -32 

Oklahoma City, OK -6.3 -36 -25 -11 -31 -5 5 -41 

Salt Lake City, UT -7.0 -39 -23 -16 -28 -11 22 -60 

Buffalo-Cheektowga, NY -5.5 -30 -21 -9 -20 -10 4 -34 

Richmond, VA -1.0 -5 -4 -1 -1 -4 -3 -2 

New Orleans-Metairie, LA -4.9 -26 -19 -7 -22 -4 10 -36 

Rochester, NY -4.2 -22 -16 -6 -12 -9 -1 -20 

Note: The table shows counterfactual results for changes in residents aggregated to the metropolitan statistical area (MSA) level for the largest 50 MSAs, 
ranked according to number of residents 2012-2016. The first two columns show percentage and absolute overall changes. The next two show absolute 
changes by education level. The next two show absolute changes by industry. The last two columns show absolute changes by occupation.  
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Table J.2. Changes in jobs in 50 largest MSAs 

MSA All jobs Non-coll. Coll. Non-trad. Trad. Non-telec. Telec. 

% ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 

New York-Newark-Jersey City, NY-NJ-PA 1.7 156 70 86 -21 177 123 32 

Los Angeles-Long Beach-Anaheim, CA 0.3 18 16 2 -109 127 120 -102 

Chicago-Naperville-Elgin, IL-IN-WI 2.7 123 87 36 -27 150 105 18 

Dallas-Fort Worth-Arlington, TX 1.9 65 58 7 -57 122 126 -61 

Houston-The Woodlands-Sugar Land, TX 1.3 37 37 -0 -55 92 85 -48 

Philadelphia-Camden-Wilmington, PA-NJ-DE-
MD 

-0.8 -24 -22 -2 -7 -17 -23 -1 

Atlanta-Sandy Springs-Alpharetta, GA 2.7 68 51 17 -14 82 51 17 

Boston-Cambridge-Newton, MA-NH -1.0 -27 -15 -13 -42 15 35 -63 

Miami-Fort Lauderdale-Pompano Beach, FL -4.6 -113 -80 -34 -97 -16 66 -179 

San Francisco-Oakland-Berkeley, CA 1.4 33 25 8 -36 69 31 2 

Washington-Arlington-Alexandria, DC-VA-
MD-WV 

2.9 63 37 26 11 51 24 39 

Detroit-Warren-Dearborn, MI -2.3 -44 -28 -16 -36 -9 27 -72 

Phoenix-Mesa-Chandler, AZ -2.5 -47 -25 -23 -61 13 59 -107 

Minneapolis-St. Paul-Bloomington, MN-WI -4.5 -84 -49 -36 -54 -30 38 -123 

Seattle-Tacoma-Bellevue, WA -2.3 -43 -20 -23 -56 14 65 -108 

Riverside-San Bernardino-Ontario, CA -7.0 -93 -74 -19 -23 -70 -36 -57 

San Diego-Chula Vista-Carlsbad, CA -12.5 -169 -111 -58 -48 -121 -9 -160 

Denver-Aurora-Lakewood, CA -1.6 -23 -8 -15 -45 23 51 -74 

St. Louis, MO-IL -1.5 -20 -12 -8 -21 1 24 -44 

Baltimore-Colombia-Townson, MD -0.5 -6 -6 -1 -10 3 -10 4 

Tampa-St. Petersburg-Clearwater, FL -4.1 -52 -34 -17 -38 -14 20 -72 

Pittsburg, PA -2.1 -24 -18 -7 -10 -14 -6 -19 

Charlotte-Concord-Gastonia, NC-SC 2.6 30 22 7 -5 34 22 7 

Portland-Vancouver-Hillsboro, OR-WA -5.6 -63 -38 -25 -35 -28 24 -87 

Orlando-Kissimmee-Sanford, FL -5.2 -61 -44 -17 -27 -34 16 -77 

Cincinnati, OH-KY-IN 1.5 15 11 4 -3 18 9 6 

Kansas City, MO-KS -3.2 -33 -21 -12 -25 -8 19 -52 
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MSA All jobs Non-coll. Coll. Non-trad. Trad. Non-telec. Telec. 

% ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 ‘000 

Cleveland-Elyria, OH -3.5 -37 -26 -11 -17 -20 -7 -30 

San Antonio-New Braunfels, TX -8.6 -81 -63 -18 -26 -55 -5 -76 

Indianapolis-Carmel-Anderson, IN 3.1 31 23 9 -1 33 -2 34 

Columbus, OH -0.4 -4 -2 -2 -6 2 2 -6 

Sacramento-Roseville-Folsom, CA -6.9 -63 -41 -22 -22 -41 -17 -46 

San Jose-Sunnyvale-Santa Clara, CA 0.8 8 8 -1 -19 26 37 -29 

Austin-Round Rock-Georgetown, TX -6.5 -61 -41 -20 -14 -47 -1 -61 

Las Vegas-Henderson-Paradise, NV -7.9 -7.2 -49 -22 -42 -29 27 -98 

Nashville-Davidson-Murfreesboro-Franklin, 
TN 

0.7 6 6 0 -6 12 3 3 

Milwaukee-Waukesha, WI -1.5 -13 -9 -4 -17 4 8 -22 

Providence-Warwick, RI-MA -2.8 -20 -14 -6 -16 -3 -10 -10 

Virginia Beach-Norfolk-Newport News, VA-NC -5.4 -35 -26 -10 -12 -23 -7 -28 

Jacksonville, FL -3.1 -20 -13 -7 -16 -4 10 -30 

Hartford-East Hartford-Middletown, CT -2.4 -15 -11 -4 -5 -10 -8 -7 

Louisville/Jefferson County, KY-IN 2.5 16 12 4 -3 19 2 14 

Memphis, TN-MS-AR -1.6 -10 -7 -3 -12 2 10 -20 

Raleigh-Cary, NC -1.3 -8 -4 -4 -7 -2 6 -14 

Oklahoma City, OK -2.3 -14 -9 -5 -17 3 6 -20 

Salt Lake City, UT -4.2 -28 -15 -13 -25 -2 28 -56 

Buffalo-Cheektowga, NY -4.5 -26 -18 -8 -18 -8 3 -29 

Richmond, VA -1.5 -9 -6 -3 -6 -3 -2 -7 

New Orleans-Metairie, LA -1.2 -7 -4 -3 -15 8 13 -19 

Rochester, NY -3.9 -20 -14 -7 -11 -9 -1 -19 

Note: The table shows counterfactual results for changes in jobs aggregated to the metropolitan statistical area (MSA) level for the largest 50 MSAs, ranked 
according to number of residents 2012-2016. The first two columns show percentage and absolute overall changes. The next two show absolute changes by 
education level. The next two show absolute changes by industry. The last two columns show absolute changes by occupation.  
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